Personalised Driver Risk Assessment With Adaptive Feedback Using Crowdsensed Telemetric Data

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Auwal Sagir Muhammad, Longbiao Chen, Cheng Wang
{"title":"Personalised Driver Risk Assessment With Adaptive Feedback Using Crowdsensed Telemetric Data","authors":"Auwal Sagir Muhammad,&nbsp;Longbiao Chen,&nbsp;Cheng Wang","doi":"10.1049/itr2.70071","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comprehensive, data-driven framework for personalised driving risk assessment, designed to enhance driver safety within intelligent transportation systems. By leveraging crowdsensed telemetric and road environment data, the framework captures diverse driving behaviours and contextual factors to provide real-time, individualised risk insights. The two-phase framework combines Gaussian Mixture Model (GMM) clustering, Deep Embedded Clustering (DEC), and Fully Connected Network (FCN) for accurate risk classification and prediction, while Deep Q-Learning (DQN) delivers adaptive feedback that encourages safer driving practices. Extensive evaluation shows that our approach outperforms traditional models in both accuracy and adaptability with an accuracy score of 95% and an average F1-score of 0.94, demonstrating its value in capturing complex driver behaviour patterns and contributing a scalable solution for transportation safety.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive, data-driven framework for personalised driving risk assessment, designed to enhance driver safety within intelligent transportation systems. By leveraging crowdsensed telemetric and road environment data, the framework captures diverse driving behaviours and contextual factors to provide real-time, individualised risk insights. The two-phase framework combines Gaussian Mixture Model (GMM) clustering, Deep Embedded Clustering (DEC), and Fully Connected Network (FCN) for accurate risk classification and prediction, while Deep Q-Learning (DQN) delivers adaptive feedback that encourages safer driving practices. Extensive evaluation shows that our approach outperforms traditional models in both accuracy and adaptability with an accuracy score of 95% and an average F1-score of 0.94, demonstrating its value in capturing complex driver behaviour patterns and contributing a scalable solution for transportation safety.

Abstract Image

Abstract Image

Abstract Image

使用众感遥测数据的自适应反馈个性化驾驶员风险评估
本文提出了一个全面的、数据驱动的个性化驾驶风险评估框架,旨在提高智能交通系统中的驾驶员安全。通过利用众感遥测和道路环境数据,该框架可以捕获不同的驾驶行为和环境因素,从而提供实时、个性化的风险洞察。两阶段框架结合高斯混合模型(GMM)聚类、深度嵌入式聚类(DEC)和全连接网络(FCN)进行准确的风险分类和预测,而深度q -学习(DQN)提供自适应反馈,鼓励更安全的驾驶行为。广泛的评估表明,我们的方法在准确性和适应性方面都优于传统模型,准确率为95%,平均f1得分为0.94,证明了它在捕捉复杂驾驶员行为模式和为交通安全提供可扩展解决方案方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信