{"title":"Personalised Driver Risk Assessment With Adaptive Feedback Using Crowdsensed Telemetric Data","authors":"Auwal Sagir Muhammad, Longbiao Chen, Cheng Wang","doi":"10.1049/itr2.70071","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comprehensive, data-driven framework for personalised driving risk assessment, designed to enhance driver safety within intelligent transportation systems. By leveraging crowdsensed telemetric and road environment data, the framework captures diverse driving behaviours and contextual factors to provide real-time, individualised risk insights. The two-phase framework combines Gaussian Mixture Model (GMM) clustering, Deep Embedded Clustering (DEC), and Fully Connected Network (FCN) for accurate risk classification and prediction, while Deep Q-Learning (DQN) delivers adaptive feedback that encourages safer driving practices. Extensive evaluation shows that our approach outperforms traditional models in both accuracy and adaptability with an accuracy score of 95% and an average F1-score of 0.94, demonstrating its value in capturing complex driver behaviour patterns and contributing a scalable solution for transportation safety.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a comprehensive, data-driven framework for personalised driving risk assessment, designed to enhance driver safety within intelligent transportation systems. By leveraging crowdsensed telemetric and road environment data, the framework captures diverse driving behaviours and contextual factors to provide real-time, individualised risk insights. The two-phase framework combines Gaussian Mixture Model (GMM) clustering, Deep Embedded Clustering (DEC), and Fully Connected Network (FCN) for accurate risk classification and prediction, while Deep Q-Learning (DQN) delivers adaptive feedback that encourages safer driving practices. Extensive evaluation shows that our approach outperforms traditional models in both accuracy and adaptability with an accuracy score of 95% and an average F1-score of 0.94, demonstrating its value in capturing complex driver behaviour patterns and contributing a scalable solution for transportation safety.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf