The Aitken Accelerated Gradient Algorithm for a Class of Dual-Rate Volterra Nonlinear Systems Utilizing the Self-Organizing Map Technique

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Junwei Wang, Weili Xiong, Feng Ding
{"title":"The Aitken Accelerated Gradient Algorithm for a Class of Dual-Rate Volterra Nonlinear Systems Utilizing the Self-Organizing Map Technique","authors":"Junwei Wang,&nbsp;Weili Xiong,&nbsp;Feng Ding","doi":"10.1002/rnc.7986","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article focuses on the parameter estimation issues for dual-rate Volterra fractional-order autoregressive moving average models. In the case of dual-rate sampling, we derive a dual-rate identification model of the system and implement intersample output estimation with the help of an auxiliary model method. Then, combined with the self-organizing map technique, we propose an Aitken multi-innovation gradient-based iterative algorithm. The system parameters are estimated using the Aitken multi-innovation gradient-based iterative algorithm, whereas the differential orders are determined using self-organizing map method. Moreover, the computational cost of the proposed algorithm is analyzed using the floating point operation. Finally, the convergence analysis and simulation examples show the effectiveness of the proposed algorithm.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 13","pages":"5364-5379"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7986","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the parameter estimation issues for dual-rate Volterra fractional-order autoregressive moving average models. In the case of dual-rate sampling, we derive a dual-rate identification model of the system and implement intersample output estimation with the help of an auxiliary model method. Then, combined with the self-organizing map technique, we propose an Aitken multi-innovation gradient-based iterative algorithm. The system parameters are estimated using the Aitken multi-innovation gradient-based iterative algorithm, whereas the differential orders are determined using self-organizing map method. Moreover, the computational cost of the proposed algorithm is analyzed using the floating point operation. Finally, the convergence analysis and simulation examples show the effectiveness of the proposed algorithm.

利用自组织映射技术求解一类双速率Volterra非线性系统的Aitken加速梯度算法
本文主要研究双速率Volterra分数阶自回归移动平均模型的参数估计问题。在双速率采样的情况下,我们推导了系统的双速率识别模型,并借助辅助模型方法实现了样本间输出估计。然后,结合自组织映射技术,提出了一种基于艾特肯多创新梯度的迭代算法。采用基于Aitken多创新梯度的迭代算法估计系统参数,采用自组织映射法确定微分阶数。此外,利用浮点运算分析了该算法的计算成本。最后,通过收敛性分析和仿真算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信