Data-Driven Stochastic Game Theoretic Differential Dynamic Programming

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Mohammad Sarbaz, Wei Sun
{"title":"Data-Driven Stochastic Game Theoretic Differential Dynamic Programming","authors":"Mohammad Sarbaz,&nbsp;Wei Sun","doi":"10.1002/rnc.7984","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a novel approach for designing optimal control using data-driven Stochastic Game Theoretic Differential Dynamic Programming (SGT-DDP). The proposed method addresses unknown stochastic systems by approximating both drift and diffusion dynamics. The drift dynamics is estimated via Gaussian Process Regression (GPR) using input–output data. The diffusion dynamics is approximated from the noise data, which is extracted through subtracting the noisy output from the smoothed output. Subsequently, the binning method is combined with GPR to obtain the approximate model of the diffusion dynamics. These approximations are integrated into the SGT-DDP framework to compute optimal control policies. Simulations on benchmark nonlinear systems under unknown dynamics demonstrate the effectiveness of the method.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 13","pages":"5343-5354"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7984","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach for designing optimal control using data-driven Stochastic Game Theoretic Differential Dynamic Programming (SGT-DDP). The proposed method addresses unknown stochastic systems by approximating both drift and diffusion dynamics. The drift dynamics is estimated via Gaussian Process Regression (GPR) using input–output data. The diffusion dynamics is approximated from the noise data, which is extracted through subtracting the noisy output from the smoothed output. Subsequently, the binning method is combined with GPR to obtain the approximate model of the diffusion dynamics. These approximations are integrated into the SGT-DDP framework to compute optimal control policies. Simulations on benchmark nonlinear systems under unknown dynamics demonstrate the effectiveness of the method.

数据驱动随机博弈论微分动态规划
本文介绍了一种利用数据驱动的随机博弈论微分动态规划(SGT-DDP)设计最优控制的新方法。该方法通过逼近漂移动力学和扩散动力学来求解未知随机系统。利用输入输出数据,通过高斯过程回归(GPR)估计漂移动力学。通过从平滑输出中减去噪声输出来提取噪声数据,从而逼近扩散动力学。然后,将分束法与探地雷达相结合,得到了扩散动力学的近似模型。这些近似被集成到SGT-DDP框架中以计算最优控制策略。对未知动力学条件下的非线性系统进行了仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信