A multi-step day-ahead wind power forecasting based on VMD-LSTM-EFG-ABC technique

Q2 Energy
Shobanadevi Ayyavu, Md Shohel Sayeed, Siti Fatimah Abdul Razak
{"title":"A multi-step day-ahead wind power forecasting based on VMD-LSTM-EFG-ABC technique","authors":"Shobanadevi Ayyavu,&nbsp;Md Shohel Sayeed,&nbsp;Siti Fatimah Abdul Razak","doi":"10.1186/s42162-025-00568-8","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and robust wind power prediction for wind farms could significantly decrease the substantial effect on grid operating safety caused by integrating high-permeability intermittent power supplies into the power grid. The article introduces a new wind power multistep prediction model combining Variational Mode De-composition (VMD) with the Long Short-Term Enhanced Forget Gate (LSTM_EFG) network. The VMD is occupied to break down the initial wind power and speed data into various sub-layers. The LSTM_EFG network predicts the low-frequency sub-layers extracted from the VMD. In contrast, the Artificial Bee Colony optimization algorithm fine-tunes the network for the high-frequency sub-layers acquired from the VMD-LSTM-EFG model. The high performance of projected methods in multistep prediction was evaluated by comparing them with eight different models. Results from four experiments show that: (a) the projected model exhibits the most superior multistep prediction performance out of all models tested; (b) in comparison to other models, the proposed model proves to be more efficient and resilient in capturing trend information. The implementation of accurate wind power prediction models continues to pose challenges due to the unpredictable, sudden, and seasonal changes in wind patterns.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00568-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00568-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and robust wind power prediction for wind farms could significantly decrease the substantial effect on grid operating safety caused by integrating high-permeability intermittent power supplies into the power grid. The article introduces a new wind power multistep prediction model combining Variational Mode De-composition (VMD) with the Long Short-Term Enhanced Forget Gate (LSTM_EFG) network. The VMD is occupied to break down the initial wind power and speed data into various sub-layers. The LSTM_EFG network predicts the low-frequency sub-layers extracted from the VMD. In contrast, the Artificial Bee Colony optimization algorithm fine-tunes the network for the high-frequency sub-layers acquired from the VMD-LSTM-EFG model. The high performance of projected methods in multistep prediction was evaluated by comparing them with eight different models. Results from four experiments show that: (a) the projected model exhibits the most superior multistep prediction performance out of all models tested; (b) in comparison to other models, the proposed model proves to be more efficient and resilient in capturing trend information. The implementation of accurate wind power prediction models continues to pose challenges due to the unpredictable, sudden, and seasonal changes in wind patterns.

基于vmd - lstm - eeg - abc技术的风电日前多步预测
对风电场进行准确、稳健的风电功率预测,可以显著降低高渗透间歇性电源接入电网对电网运行安全造成的实质性影响。本文介绍了一种结合变分模态分解(VMD)和长短期增强遗忘门(LSTM_EFG)网络的风电多步预测模型。占用VMD将初始风力和风速数据分解为各个子层。LSTM_EFG网络预测从VMD中提取的低频子层。相比之下,人工蜂群优化算法对从VMD-LSTM-EFG模型中获取的高频子层进行网络微调。通过与8种不同模型的比较,评价了投影方法在多步预测中的高性能。四个实验结果表明:(a)在所有模型中,投影模型的多步预测性能最好;(b)与其他模型相比,建议的模型在获取趋势信息方面更有效率和弹性更强。由于风力模式的不可预测性、突发性和季节性变化,准确的风力预测模型的实施继续面临挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信