On the Cyclic Fracture Toughness Parameter, Ks, from the Standpoint of Fracture Physics and Mechanics

IF 2 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
L. R. Botvina, M. R. Tyutin, K. Prasad
{"title":"On the Cyclic Fracture Toughness Parameter, Ks, from the Standpoint of Fracture Physics and Mechanics","authors":"L. R. Botvina,&nbsp;M. R. Tyutin,&nbsp;K. Prasad","doi":"10.1134/S1029959924601684","DOIUrl":null,"url":null,"abstract":"<p>The paper analyzes the stages and kinetic features of fatigue crack growth. Particular attention is paid to fatigue stage II consisting of two substages, namely, II<sub>a</sub> and II<sub>b</sub>. The stress intensity factor <i>K</i><sub>S</sub> is proposed to determine the boundary between them (corresponds to the stable crack length <i>a</i><sub>S</sub> under plane-strain conditions) and to characterize the cyclic fracture toughness. It is assumed that <i>K</i><sub>S</sub> corresponds to the stress intensity factor <i>K</i><sub>GY</sub> estimated by the cyclic yield stress and the length of a focal fatigue crack. Enlargement of the plastic zone at the crack tip and a transition to the plane-stress state at <i>K</i> ≥ <i>K</i><sub>S</sub> change the fatigue fracture pattern, which manifests itself as knee points in the <i>K</i><sub>max</sub> dependences of acoustic emission parameters, phase transformation rate in metastable steel, and fatigue striation spacing: after reaching <i>K</i><sub>S</sub>, the fatigue crack grows by the striation-per-cycle pattern. In addition, it is shown that the value of <i>K</i> = <i>K</i><sub>S</sub> corresponds to the pivot point of the crack growth curve plotted for the steel tested in mixed loading modes.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 4","pages":"502 - 517"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601684","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper analyzes the stages and kinetic features of fatigue crack growth. Particular attention is paid to fatigue stage II consisting of two substages, namely, IIa and IIb. The stress intensity factor KS is proposed to determine the boundary between them (corresponds to the stable crack length aS under plane-strain conditions) and to characterize the cyclic fracture toughness. It is assumed that KS corresponds to the stress intensity factor KGY estimated by the cyclic yield stress and the length of a focal fatigue crack. Enlargement of the plastic zone at the crack tip and a transition to the plane-stress state at KKS change the fatigue fracture pattern, which manifests itself as knee points in the Kmax dependences of acoustic emission parameters, phase transformation rate in metastable steel, and fatigue striation spacing: after reaching KS, the fatigue crack grows by the striation-per-cycle pattern. In addition, it is shown that the value of K = KS corresponds to the pivot point of the crack growth curve plotted for the steel tested in mixed loading modes.

Abstract Image

Abstract Image

从断裂物理力学的角度谈循环断裂韧性参数Ks
分析了疲劳裂纹扩展的阶段和动力学特征。特别注意的是疲劳阶段II,它由两个子阶段组成,即IIa和IIb。提出了应力强度因子KS来确定它们之间的边界(对应于平应变条件下的稳定裂纹长度aS)并表征循环断裂韧性。假设KS对应于由循环屈服应力和局部疲劳裂纹长度估算的应力强度因子KGY。裂纹尖端塑性区的扩大和K≥KS时向平面应力状态的过渡改变了疲劳断裂模式,在声发射参数、亚稳钢相变速率和疲劳条纹间距的Kmax依赖关系中表现为膝点:到达KS后,疲劳裂纹以每循环条纹的方式扩展。此外,K = KS值对应于混合加载模式下试件裂纹扩展曲线的轴心点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信