Exploring quasi-geometric frameworks for quantum error-correcting codes: a systematic review

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Valentine Nyirahafashimana, Nurisya Mohd Shah, Umair Abdul Halim, Mohamed Othman
{"title":"Exploring quasi-geometric frameworks for quantum error-correcting codes: a systematic review","authors":"Valentine Nyirahafashimana,&nbsp;Nurisya Mohd Shah,&nbsp;Umair Abdul Halim,&nbsp;Mohamed Othman","doi":"10.1007/s11128-025-04904-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates quasi-geometric strategies for improving quantum error correction in quantum computing, utilizing geometric principles to improve error detection and correction while maintaining computational efficiency. A comprehensive review of 20 studies, selected from 2988 publications spanning 2019 to 2024, reveals significant progress in quasi-cyclic codes, quasi-orthogonal codes, and quasi-structured geometric codes, highlighting their growing importance in quantum error correction and information theory. The findings indicate that quasi-orthogonal codes that employ coefficient vector differential quasi-orthogonal space-time frequency coding demonstrated a <span>\\(1.20\\)</span> dB gain at a bit error rate of <span>\\(10^{-4}\\)</span>, while reducing computational complexity. Quasi-structured geometric codes offered energy-efficient solutions, facilitating multi-state orthogonal signaling and reliable linear code construction. Furthermore, quasi-cyclic low-density parity-check codes with optimized information selection surpassed traditional forward error correction codes, achieving superior quantum error rates of <span>\\(10^{-5}\\)</span> at <span>\\(10.00\\)</span> dB and <span>\\(10^{-6}\\)</span> at <span>\\(15.00\\)</span> dB. Performance analysis showed that the effectiveness of error correction depends more on the frequency of six-length cycles than on girth, suggesting a new direction for optimization. The study emphasizes the transformative potential of quasi-geometric strategies in improving quantum communication by focusing on bit and quantum bit error rates within both stabilizer and classical frameworks. Future work focuses on integrating hybrid quantum-classical codes to raise error resilience and efficiency, addressing challenges like decoding instability, and limited orthogonality to enable reliable and computational quantum communication systems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04904-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04904-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates quasi-geometric strategies for improving quantum error correction in quantum computing, utilizing geometric principles to improve error detection and correction while maintaining computational efficiency. A comprehensive review of 20 studies, selected from 2988 publications spanning 2019 to 2024, reveals significant progress in quasi-cyclic codes, quasi-orthogonal codes, and quasi-structured geometric codes, highlighting their growing importance in quantum error correction and information theory. The findings indicate that quasi-orthogonal codes that employ coefficient vector differential quasi-orthogonal space-time frequency coding demonstrated a \(1.20\) dB gain at a bit error rate of \(10^{-4}\), while reducing computational complexity. Quasi-structured geometric codes offered energy-efficient solutions, facilitating multi-state orthogonal signaling and reliable linear code construction. Furthermore, quasi-cyclic low-density parity-check codes with optimized information selection surpassed traditional forward error correction codes, achieving superior quantum error rates of \(10^{-5}\) at \(10.00\) dB and \(10^{-6}\) at \(15.00\) dB. Performance analysis showed that the effectiveness of error correction depends more on the frequency of six-length cycles than on girth, suggesting a new direction for optimization. The study emphasizes the transformative potential of quasi-geometric strategies in improving quantum communication by focusing on bit and quantum bit error rates within both stabilizer and classical frameworks. Future work focuses on integrating hybrid quantum-classical codes to raise error resilience and efficiency, addressing challenges like decoding instability, and limited orthogonality to enable reliable and computational quantum communication systems.

探索量子纠错码的准几何框架:系统回顾
本研究探讨了在量子计算中提高量子纠错的准几何策略,利用几何原理在保持计算效率的同时提高错误检测和纠错。从2019年至2024年的2988篇论文中选出的20项研究进行了全面回顾,揭示了准循环码、准正交码和准结构几何码的重大进展,突出了它们在量子纠错和信息论中的重要性。研究结果表明,采用系数矢量差分准正交空时频率编码的准正交码在误码率为\(10^{-4}\)的情况下获得\(1.20\) dB增益,同时降低了计算复杂度。准结构几何码提供了高效节能的解决方案,便于多状态正交信令和可靠的线性码构造。此外,具有优化信息选择的准循环低密度奇偶校验码超越了传统的前向纠错码,在\(10.00\) dB和\(15.00\) dB处实现了更高的量子错误率\(10^{-5}\)和\(10^{-6}\)。性能分析表明,误差校正的有效性更多地取决于六长周期的频率而不是周长,这为优化提供了新的方向。该研究强调了准几何策略的变革潜力,通过关注稳定器和经典框架内的比特和量子误码率来改善量子通信。未来的工作重点是集成混合量子经典码,以提高错误恢复能力和效率,解决解码不稳定性和有限正交性等挑战,以实现可靠的计算量子通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信