Dealloying-driven nanospherical architecture in AlYNiPdCoFe high-entropy alloy ribbons: controllable synthesis and mechanistic insights into enhanced oxygen evolution reaction

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yunjie Li , Chuan Wang , Keming Zhao , Jing Ding , Lianzhao Deng , Ju Gao , Lin Xiao
{"title":"Dealloying-driven nanospherical architecture in AlYNiPdCoFe high-entropy alloy ribbons: controllable synthesis and mechanistic insights into enhanced oxygen evolution reaction","authors":"Yunjie Li ,&nbsp;Chuan Wang ,&nbsp;Keming Zhao ,&nbsp;Jing Ding ,&nbsp;Lianzhao Deng ,&nbsp;Ju Gao ,&nbsp;Lin Xiao","doi":"10.1039/d5cy00637f","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy YNiPdCoFe alloy ribbons with dealloying-induced hierarchical nanosheet/nanosphere structures achieve a low overpotential (254 mV at 10 mA cm<sup>−2</sup>) and 80 hour stability in alkaline conditions, offering an innovative design for durable OER electrocatalysts.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 17","pages":"Pages 4916-4921"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325003223","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy YNiPdCoFe alloy ribbons with dealloying-induced hierarchical nanosheet/nanosphere structures achieve a low overpotential (254 mV at 10 mA cm−2) and 80 hour stability in alkaline conditions, offering an innovative design for durable OER electrocatalysts.

Abstract Image

AlYNiPdCoFe高熵合金带中脱合金驱动的纳米球形结构:可控合成和增强析氧反应的机理研究
高熵YNiPdCoFe合金带具有脱合金诱导的分层纳米片/纳米球结构,在碱性条件下具有低过电位(10 mA cm - 2时254 mV)和80小时的稳定性,为耐用的OER电催化剂提供了创新的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信