LoFi: Neural Local Fields for Scalable Image Reconstruction

IF 4.8 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
AmirEhsan Khorashadizadeh;Tobïas I. Liaudat;Tianlin Liu;Jason D. McEwen;Ivan Dokmanić
{"title":"LoFi: Neural Local Fields for Scalable Image Reconstruction","authors":"AmirEhsan Khorashadizadeh;Tobïas I. Liaudat;Tianlin Liu;Jason D. McEwen;Ivan Dokmanić","doi":"10.1109/TCI.2025.3594983","DOIUrl":null,"url":null,"abstract":"We introduce LoFi (Local Field)—a <italic>coordinate-based</i> framework for image reconstruction which combines advantages of convolutional neural networks (CNNs) and neural fields or implicit neural representations (INRs). Unlike conventional deep neural networks, LoFi reconstructs an image one coordinate at a time, by processing only adaptive local information from the input which is relevant for the target coordinate. Similar to INRs, LoFi can efficiently recover images at any continuous coordinate, enabling image reconstruction at multiple resolutions. LoFi achieves excellent generalization to out-of-distribution data with memory usage almost independent of image resolution, while performing as well or better than standard deep learning models like CNNs and vision transformers (ViTs). Remarkably, training on <inline-formula><tex-math>$1024 \\times 1024$</tex-math></inline-formula> images requires less than 200MB of memory—much less than standard CNNs and ViTs. Our experiments show that Locality enables training on extremely small datasets with ten or fewer samples without overfitting and without explicit regularization or early stopping.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"1128-1141"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11108275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11108275/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce LoFi (Local Field)—a coordinate-based framework for image reconstruction which combines advantages of convolutional neural networks (CNNs) and neural fields or implicit neural representations (INRs). Unlike conventional deep neural networks, LoFi reconstructs an image one coordinate at a time, by processing only adaptive local information from the input which is relevant for the target coordinate. Similar to INRs, LoFi can efficiently recover images at any continuous coordinate, enabling image reconstruction at multiple resolutions. LoFi achieves excellent generalization to out-of-distribution data with memory usage almost independent of image resolution, while performing as well or better than standard deep learning models like CNNs and vision transformers (ViTs). Remarkably, training on $1024 \times 1024$ images requires less than 200MB of memory—much less than standard CNNs and ViTs. Our experiments show that Locality enables training on extremely small datasets with ten or fewer samples without overfitting and without explicit regularization or early stopping.
LoFi:用于可扩展图像重建的神经局部域
我们引入了LoFi (Local Field)——一种基于坐标的图像重建框架,它结合了卷积神经网络(cnn)和神经场或隐式神经表示(INRs)的优点。与传统的深度神经网络不同,LoFi通过只处理与目标坐标相关的输入的自适应局部信息,一次重建一个坐标。与INRs类似,LoFi可以有效地恢复任意连续坐标下的图像,实现多分辨率下的图像重建。LoFi实现了对分布外数据的出色泛化,内存使用几乎与图像分辨率无关,同时表现与cnn和视觉变形器(ViTs)等标准深度学习模型一样好或更好。值得注意的是,在$1024 × 1024$的图像上进行训练只需要不到200MB的内存——比标准的cnn和vit少得多。我们的实验表明,Locality可以在极小的数据集上进行训练,只有十个或更少的样本,而不会过度拟合,也不会显式正则化或提前停止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信