Nitsche’s serendipity virtual element method for the eigenvalue problem

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jian Meng , Xu Qian , Fang Su , Bing-Bing Xu
{"title":"Nitsche’s serendipity virtual element method for the eigenvalue problem","authors":"Jian Meng ,&nbsp;Xu Qian ,&nbsp;Fang Su ,&nbsp;Bing-Bing Xu","doi":"10.1016/j.cma.2025.118336","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Nitsche’s extended serendipity virtual element method for the eigenvalue problem in two and three dimensions. We start from the introduction of two- and three-dimensional serendipity virtual element spaces, in which the serendipity technique helps us drop all internal-to-face and internal-to-element degrees of freedom with the suitable projection operators fitting into virtual element spaces. Meanwhile, we give the Nitsche’s extended serendipity virtual element scheme of the eigenvalue problem. At the next stage, we prove the spectral approximation and the optimal error estimates of the proposed numerical method. By using the standard interpolation and polynomial approximation properties, we prove the <span><math><msup><mi>H</mi><mn>1</mn></msup></math></span>-norm error bound of the associated source problem. To consider the <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span>-norm error bound, the Ritz-Volterra projection based on the formulation of Nitsche’s virtual element bilinear form is defined. Then we rigorously analyze its approximation properties. After that, we build the <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> error estimate of the associated source problem. In the main theorems, we prove the error estimates of eigenfunctions and eigenvalues obtained by the Nitsche’s extended serendipity virtual element method. At the final stage, we extend the Nitsche’s idea to arbitrary curved domains by modifying the virtual element scheme with Taylor expansion terms. Numerical experiments confirm the theoretical results, using the Nitsche’s serendipity virtual element method to solve the Laplacian and Shrödinger eigenvalue problems on plane and curved domains.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"446 ","pages":"Article 118336"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525006085","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Nitsche’s extended serendipity virtual element method for the eigenvalue problem in two and three dimensions. We start from the introduction of two- and three-dimensional serendipity virtual element spaces, in which the serendipity technique helps us drop all internal-to-face and internal-to-element degrees of freedom with the suitable projection operators fitting into virtual element spaces. Meanwhile, we give the Nitsche’s extended serendipity virtual element scheme of the eigenvalue problem. At the next stage, we prove the spectral approximation and the optimal error estimates of the proposed numerical method. By using the standard interpolation and polynomial approximation properties, we prove the H1-norm error bound of the associated source problem. To consider the L2-norm error bound, the Ritz-Volterra projection based on the formulation of Nitsche’s virtual element bilinear form is defined. Then we rigorously analyze its approximation properties. After that, we build the L2 error estimate of the associated source problem. In the main theorems, we prove the error estimates of eigenfunctions and eigenvalues obtained by the Nitsche’s extended serendipity virtual element method. At the final stage, we extend the Nitsche’s idea to arbitrary curved domains by modifying the virtual element scheme with Taylor expansion terms. Numerical experiments confirm the theoretical results, using the Nitsche’s serendipity virtual element method to solve the Laplacian and Shrödinger eigenvalue problems on plane and curved domains.
特征值问题的Nitsche偶然性虚元法
本文研究了二维和三维特征值问题的Nitsche扩展偶然性虚元法。我们从引入二维和三维serendipity虚拟元素空间开始,其中serendipity技术帮助我们放弃所有内部到面和内部到元素的自由度,并使用合适的投影算子拟合到虚拟元素空间中。同时,给出了特征值问题的Nitsche扩展偶然性虚元格式。在第二阶段,我们证明了所提出的数值方法的谱近似和最优误差估计。利用标准插值和多项式逼近性质,证明了相关源问题的h1 -范数误差界。为了考虑l2范数误差界,定义了基于Nitsche虚元双线性形式的Ritz-Volterra投影。然后严格分析了它的近似性质。之后,我们构建相关源问题的L2误差估计。在主要定理中,我们证明了由Nitsche扩展偶然性虚元法得到的特征函数和特征值的误差估计。最后,我们用泰勒展开项修改虚元格式,将Nitsche的思想推广到任意弯曲区域。数值实验证实了理论结果,利用Nitsche 's serendipity虚元方法解决了平面和曲面上的拉普拉斯和Shrödinger特征值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信