Kholmat Shadimetov , Anvar Adilkhodjaev , Otabek Gulomov
{"title":"Optimal quadrature formulas for approximate calculation of rapidly oscillating integrals","authors":"Kholmat Shadimetov , Anvar Adilkhodjaev , Otabek Gulomov","doi":"10.1016/j.rinam.2025.100627","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the problem of constructing optimal formulas for approximate integration in the Sobolev space <span><math><mrow><mover><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow><mrow><mfenced><mrow><mi>m</mi></mrow></mfenced></mrow></msubsup></mrow><mrow><mo>˜</mo></mrow></mover><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></math></span> of periodic functions. Using the functional approach, we obtain optimal quadrature formulas for the approximate calculation of rapidly oscillating integrals. Then, we obtain explicit formulas for the coefficients of the optimal quadrature formulas and we get the sharp estimation of the error of the constructed formulas.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100627"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the problem of constructing optimal formulas for approximate integration in the Sobolev space of periodic functions. Using the functional approach, we obtain optimal quadrature formulas for the approximate calculation of rapidly oscillating integrals. Then, we obtain explicit formulas for the coefficients of the optimal quadrature formulas and we get the sharp estimation of the error of the constructed formulas.