M. Benítez , A. Bermúdez , P. Fontán , I. Martínez , P. Salgado
{"title":"A pure-Lagrangian finite element approach for solving thermo-electrical-mechanical models. Application to electric upsetting","authors":"M. Benítez , A. Bermúdez , P. Fontán , I. Martínez , P. Salgado","doi":"10.1016/j.finel.2025.104433","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a novel numerical procedure for solving fully coupled thermo-electrical-mechanical problems using implicit Runge–Kutta time integration within a purely Lagrangian finite element framework. Our formulation, grounded in continuum mechanics, accurately captures the interdependence of mechanical, thermal, and electrical effects under large deformations. It features a fully coupled thermo-electrical-mechanical Lagrangian model with an elasto-viscoplastic constitutive law, considers six primary variables –velocity, temperature, electric potential, plastic deformation gradient, an internal strain hardening variable, and a Lagrange multiplier for enforcing contact conditions– and employs a pure-Lagrangian description. This ensures the computational domain remains fixed and known a priori, simplifies the tracking of free surfaces, and eliminates convective terms. To validate our approach, we solve several axisymmetric benchmark problems and analyze convergence rates in both time and space. Moreover, our numerical results show excellent agreement with the solution obtained using commercial packages for an in-die electric upsetting process.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104433"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel numerical procedure for solving fully coupled thermo-electrical-mechanical problems using implicit Runge–Kutta time integration within a purely Lagrangian finite element framework. Our formulation, grounded in continuum mechanics, accurately captures the interdependence of mechanical, thermal, and electrical effects under large deformations. It features a fully coupled thermo-electrical-mechanical Lagrangian model with an elasto-viscoplastic constitutive law, considers six primary variables –velocity, temperature, electric potential, plastic deformation gradient, an internal strain hardening variable, and a Lagrange multiplier for enforcing contact conditions– and employs a pure-Lagrangian description. This ensures the computational domain remains fixed and known a priori, simplifies the tracking of free surfaces, and eliminates convective terms. To validate our approach, we solve several axisymmetric benchmark problems and analyze convergence rates in both time and space. Moreover, our numerical results show excellent agreement with the solution obtained using commercial packages for an in-die electric upsetting process.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.