Isolation, cloning, and characterization of a novel GH5 cellulase from yak rumen metagenome for enhanced lignocellulose hydrolysis in biofuel production and ruminant feed utilization
IF 3.7 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ibrahim Bature , Zeyi Liang , Wu Xiaohu , Feng Yang , Yayuan Yang , Pengcheng Dong , Xuezhi Ding
{"title":"Isolation, cloning, and characterization of a novel GH5 cellulase from yak rumen metagenome for enhanced lignocellulose hydrolysis in biofuel production and ruminant feed utilization","authors":"Ibrahim Bature , Zeyi Liang , Wu Xiaohu , Feng Yang , Yayuan Yang , Pengcheng Dong , Xuezhi Ding","doi":"10.1016/j.enzmictec.2025.110737","DOIUrl":null,"url":null,"abstract":"<div><div>Lignocellulosic biomass is a promising feedstock for biofuel production, but its complex structure, including cellulose and hemicellulose, challenges efficient enzymatic hydrolysis. <em>CelyA</em>, a novel cellulase from the yak rumen, has potential for improving biomass degradation and biofuel production. The <em>CelyA</em> gene was cloned, expressed, and purified. Biochemical characterization included assessments of pH, temperature, and salt tolerance. The enzyme's substrate specificity was tested on crystalline cellulose, CMC, and other polysaccharides. <em>In vitro</em> rumen fermentation was performed to evaluate its effect on fiber digestibility and microbial community composition. Biofuel production was tested by hydrolyzing maize, rice, and wheat straw. <em>CelyA</em> demonstrated optimal activity at pH 6.0 and 40.0 °C and maintained moderate stability across a wide pH range (3.0–12.0), retaining measurable activity even under strongly acidic and alkaline conditions. The enzyme demonstrated excellent salt tolerance, retaining 91.0 % activity in 1.0 M NaCl. <em>CelyA</em> efficiently degraded maize straw in hydrolysis assays, producing 7.2 µmol/L of reducing sugars. <em>In vitro</em> rumen fermentation with <em>CelyA</em> increased fiber digestibility by 8.3 % for maize straw, 14.5 % for rice straw, and 2.7 % for wheat straw. Gas production also increased significantly, with maize straw showing a 91.3 % increase. 16S rRNA sequencing revealed selective enrichment of <em>Ruminococcus</em> and <em>Prevotella</em>, key cellulolytic microbes. <em>CelyA</em> demonstrates strong potential for biofuel production, efficiently hydrolyzing lignocellulosic biomass and enhancing ruminal fiber digestibility. Its stability, salt tolerance, and substrate specificity make it a valuable enzyme for biofuel production and livestock feed optimization.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"191 ","pages":"Article 110737"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001577","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biomass is a promising feedstock for biofuel production, but its complex structure, including cellulose and hemicellulose, challenges efficient enzymatic hydrolysis. CelyA, a novel cellulase from the yak rumen, has potential for improving biomass degradation and biofuel production. The CelyA gene was cloned, expressed, and purified. Biochemical characterization included assessments of pH, temperature, and salt tolerance. The enzyme's substrate specificity was tested on crystalline cellulose, CMC, and other polysaccharides. In vitro rumen fermentation was performed to evaluate its effect on fiber digestibility and microbial community composition. Biofuel production was tested by hydrolyzing maize, rice, and wheat straw. CelyA demonstrated optimal activity at pH 6.0 and 40.0 °C and maintained moderate stability across a wide pH range (3.0–12.0), retaining measurable activity even under strongly acidic and alkaline conditions. The enzyme demonstrated excellent salt tolerance, retaining 91.0 % activity in 1.0 M NaCl. CelyA efficiently degraded maize straw in hydrolysis assays, producing 7.2 µmol/L of reducing sugars. In vitro rumen fermentation with CelyA increased fiber digestibility by 8.3 % for maize straw, 14.5 % for rice straw, and 2.7 % for wheat straw. Gas production also increased significantly, with maize straw showing a 91.3 % increase. 16S rRNA sequencing revealed selective enrichment of Ruminococcus and Prevotella, key cellulolytic microbes. CelyA demonstrates strong potential for biofuel production, efficiently hydrolyzing lignocellulosic biomass and enhancing ruminal fiber digestibility. Its stability, salt tolerance, and substrate specificity make it a valuable enzyme for biofuel production and livestock feed optimization.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.