DeepEVD: Integrating Epidemiological data into deep learning frameworks based on spatio-temporal feature learning for EVD forecasting

IF 1.7 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Abdul Joseph Fofanah , Alpha Alimamy Kamara , Albert Patrick Sankoh , Tiegang Gao , Ibrahim Dumbuya , Zachariyah Bai Conteh
{"title":"DeepEVD: Integrating Epidemiological data into deep learning frameworks based on spatio-temporal feature learning for EVD forecasting","authors":"Abdul Joseph Fofanah ,&nbsp;Alpha Alimamy Kamara ,&nbsp;Albert Patrick Sankoh ,&nbsp;Tiegang Gao ,&nbsp;Ibrahim Dumbuya ,&nbsp;Zachariyah Bai Conteh","doi":"10.1016/j.sste.2025.100741","DOIUrl":null,"url":null,"abstract":"<div><div>The paper introduces DeepEVD, an innovative framework that integrates human mobility data to forecast Ebola Virus Disease (EVD) outbreaks. Traditional epidemiological models often struggle to account for the dynamic nature of human movement, which is crucial for understanding EVD transmission. DeepEVD leverages diverse mobility data sources, including phone records, GPS traces, and social media posts, to extract significant spatio-temporal features. It utilises Graph Convolutional Networks (GCN) and Long Short Term Memory (LSTM) networks to establish connections between mobility patterns and EVD cases across both space and time. The framework was tested on real-world datasets from the 2014–2016 West Africa outbreak and the 2015–2016 Sierra Leone outbreak, demonstrating a 5%–10% reduction in forecasting errors compared to baseline methods. Ablation studies reveal the impact of various data sources and feature extraction methods on accuracy. DeepEVD not only delivers state-of-the-art performance, but it also provides actionable insights for EVD prevention and control. Implementation of the proposed DeepEVD can be accessed here <span><span>https://github.com/afofanah/DeepEVDMob</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"54 ","pages":"Article 100741"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces DeepEVD, an innovative framework that integrates human mobility data to forecast Ebola Virus Disease (EVD) outbreaks. Traditional epidemiological models often struggle to account for the dynamic nature of human movement, which is crucial for understanding EVD transmission. DeepEVD leverages diverse mobility data sources, including phone records, GPS traces, and social media posts, to extract significant spatio-temporal features. It utilises Graph Convolutional Networks (GCN) and Long Short Term Memory (LSTM) networks to establish connections between mobility patterns and EVD cases across both space and time. The framework was tested on real-world datasets from the 2014–2016 West Africa outbreak and the 2015–2016 Sierra Leone outbreak, demonstrating a 5%–10% reduction in forecasting errors compared to baseline methods. Ablation studies reveal the impact of various data sources and feature extraction methods on accuracy. DeepEVD not only delivers state-of-the-art performance, but it also provides actionable insights for EVD prevention and control. Implementation of the proposed DeepEVD can be accessed here https://github.com/afofanah/DeepEVDMob.
DeepEVD:将流行病学数据整合到基于时空特征学习的深度学习框架中,用于EVD预测
本文介绍了DeepEVD,这是一个整合人类流动数据以预测埃博拉病毒病(EVD)爆发的创新框架。传统的流行病学模型往往难以解释人类运动的动态性,而这对于理解埃博拉病毒病的传播至关重要。DeepEVD利用各种移动数据源,包括电话记录、GPS跟踪和社交媒体帖子,提取重要的时空特征。它利用图形卷积网络(GCN)和长短期记忆(LSTM)网络在空间和时间上建立移动模式与EVD病例之间的联系。该框架在2014-2016年西非疫情和2015-2016年塞拉利昂疫情的真实数据集上进行了测试,结果表明,与基线方法相比,预测误差减少了5%-10%。消融研究揭示了不同的数据来源和特征提取方法对准确性的影响。DeepEVD不仅提供了最先进的性能,而且还为EVD的预防和控制提供了可操作的见解。建议的DeepEVD的实现可以在这里访问https://github.com/afofanah/DeepEVDMob。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信