Spatial patterns of leaf angle distribution covary with canopy fluorescence yield, reflectance indices, and leaf chlorophyll content, in a mixed temperate forest

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Andrew D. Jablonski, Rong Li, Jongmin Kim, Manuel Lerdau, Carmen Petras, Xi Yang
{"title":"Spatial patterns of leaf angle distribution covary with canopy fluorescence yield, reflectance indices, and leaf chlorophyll content, in a mixed temperate forest","authors":"Andrew D. Jablonski,&nbsp;Rong Li,&nbsp;Jongmin Kim,&nbsp;Manuel Lerdau,&nbsp;Carmen Petras,&nbsp;Xi Yang","doi":"10.1016/j.rse.2025.114996","DOIUrl":null,"url":null,"abstract":"<div><div>Plant canopies are integrated units that coordinate their functional (e.g., foliar biochemistry) and structural properties. This coordination affects remote sensing observations of canopy reflectance and solar-induced chlorophyll fluorescence (SIF). One key canopy structural property is leaf angle. Despite the fact that radiative transfer models have shown the crucial role of leaf angle in modulating remote sensing signals, methodological and technological barriers have prevented detailed investigations of how leaf angle covaries with canopy function and remote sensing observations. In this study, we employ a novel uncrewed aerial system (UAS) called FluoSpecAir to study the spatial patterns in far-red (FR) SIF (SIF<sub>obs,FR</sub>), near-infrared reflectance and radiance of vegetation (NIR<sub>V</sub> and NIR<sub>V</sub>R), normalized difference vegetation index (NDVI), and chlorophyll:carotenoid index (CCI), across individual tree canopies during two separate time periods. Additionally, we collected 3D scans of individual tree canopies using terrestrial laser scanning (TLS) and estimated foliar pigment content from leaf reflectance spectra. We used the 3D scans to calculate the leaf angle distribution (LAD) and leaf area voxel density (LAVD) of each canopy. We modeled LAD using a beta distribution, which is parameterized by μ and <em>ν</em>, and the leaf inclination distribution function (LIDF), which is parameterized by LIDFa and LIDFb. We found that <em>ν</em> and μ, which are inversely related to the variance in leaf angle, covaried with spatial patterns in peak growing season canopy CCI, NDVI, SIF<sub>obs,FR</sub>, and <span><math><mfrac><msub><mi>SIF</mi><mrow><mi>obs</mi><mo>,</mo><mi>FR</mi></mrow></msub><mrow><msub><mi>NIR</mi><mi>V</mi></msub><mi>R</mi></mrow></mfrac></math></span>, and leaf chlorophyll content. Canopies with greater variation in LAD, thus lower <em>ν</em> and μ, have larger values of NDVI, CCI, SIF<sub>obs,FR</sub>, <span><math><mfrac><msub><mi>SIF</mi><mrow><mi>obs</mi><mo>,</mo><mi>FR</mi></mrow></msub><mrow><msub><mi>NIR</mi><mi>V</mi></msub><mi>R</mi></mrow></mfrac></math></span>, and leaf chlorophyll content, while LAVD is not correlated with these remote sensing metrics. We found positive correlations between leaf chlorophyll content and canopy NDVI, SIF<sub>obs,FR</sub>, and <span><math><mfrac><msub><mi>SIF</mi><mrow><mi>obs</mi><mo>,</mo><mi>FR</mi></mrow></msub><mrow><msub><mi>NIR</mi><mi>V</mi></msub><mi>R</mi></mrow></mfrac></math></span>, as well. Together, our results show that across our study site during the peak growing season, spatial variability in remote sensing variables is driven by the coordination between LAD and leaf chlorophyll content. These findings provide important context for how we interpret landscape level variability in SIF and <span><math><mfrac><msub><mi>SIF</mi><mrow><mi>obs</mi><mo>,</mo><mi>FR</mi></mrow></msub><mrow><msub><mi>NIR</mi><mi>V</mi></msub><mi>R</mi></mrow></mfrac></math></span>, and how spatial variation in both can be used to infer differences in plant metabolism.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"330 ","pages":"Article 114996"},"PeriodicalIF":11.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004006","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant canopies are integrated units that coordinate their functional (e.g., foliar biochemistry) and structural properties. This coordination affects remote sensing observations of canopy reflectance and solar-induced chlorophyll fluorescence (SIF). One key canopy structural property is leaf angle. Despite the fact that radiative transfer models have shown the crucial role of leaf angle in modulating remote sensing signals, methodological and technological barriers have prevented detailed investigations of how leaf angle covaries with canopy function and remote sensing observations. In this study, we employ a novel uncrewed aerial system (UAS) called FluoSpecAir to study the spatial patterns in far-red (FR) SIF (SIFobs,FR), near-infrared reflectance and radiance of vegetation (NIRV and NIRVR), normalized difference vegetation index (NDVI), and chlorophyll:carotenoid index (CCI), across individual tree canopies during two separate time periods. Additionally, we collected 3D scans of individual tree canopies using terrestrial laser scanning (TLS) and estimated foliar pigment content from leaf reflectance spectra. We used the 3D scans to calculate the leaf angle distribution (LAD) and leaf area voxel density (LAVD) of each canopy. We modeled LAD using a beta distribution, which is parameterized by μ and ν, and the leaf inclination distribution function (LIDF), which is parameterized by LIDFa and LIDFb. We found that ν and μ, which are inversely related to the variance in leaf angle, covaried with spatial patterns in peak growing season canopy CCI, NDVI, SIFobs,FR, and SIFobs,FRNIRVR, and leaf chlorophyll content. Canopies with greater variation in LAD, thus lower ν and μ, have larger values of NDVI, CCI, SIFobs,FR, SIFobs,FRNIRVR, and leaf chlorophyll content, while LAVD is not correlated with these remote sensing metrics. We found positive correlations between leaf chlorophyll content and canopy NDVI, SIFobs,FR, and SIFobs,FRNIRVR, as well. Together, our results show that across our study site during the peak growing season, spatial variability in remote sensing variables is driven by the coordination between LAD and leaf chlorophyll content. These findings provide important context for how we interpret landscape level variability in SIF and SIFobs,FRNIRVR, and how spatial variation in both can be used to infer differences in plant metabolism.
混合温带森林叶片角分布的空间格局与冠层荧光产率、反射率指数和叶片叶绿素含量相关
植物冠层是协调其功能(如叶面生物化学)和结构特性的综合单位。这种协调影响了冠层反射率和太阳诱导叶绿素荧光(SIF)的遥感观测。一个关键的冠层结构特性是叶片角度。尽管辐射传输模型显示了叶片角度在调制遥感信号中的关键作用,但方法和技术上的障碍阻碍了对叶片角度如何随冠层功能和遥感观测共变的详细研究。在这项研究中,我们采用了一种名为FluoSpecAir的新型无人驾驶航空系统(UAS),研究了两个不同时间段内单个树冠的远红(FR) SIF (SIFobs,FR)、近红外植被反射率和辐射(NIRV和NIRVR)、归一化植被指数(NDVI)和叶绿素:类胡萝卜素指数(CCI)的空间格局。此外,我们利用地面激光扫描(TLS)收集了单个树冠的3D扫描数据,并通过叶片反射光谱估算了叶面色素含量。我们利用三维扫描计算了每个冠层的叶角分布(LAD)和叶面积体素密度(LAVD)。我们用μ和ν作为参数的beta分布和LIDFa和LIDFb作为参数的叶片倾角分布函数(LIDF)来建模LAD。结果表明,与叶片角度变化呈负相关的ν和μ与生长旺季冠层CCI、NDVI、SIFobs、FR和SIFobs、FRNIRVRSIFobs、FRNIRVR和叶片叶绿素含量的空间格局呈共变关系。LAD变化越大,ν和μ越低,NDVI、CCI、SIFobs、FR、SIFobs、FRNIRVRSIFobs、FRNIRVR和叶片叶绿素含量越高,而LAVD与这些遥感指标没有相关性。叶片叶绿素含量与冠层NDVI、SIFobs、FR、SIFobs、FRNIRVRSIFobs、FRNIRVR呈正相关。综上所述,在整个研究点的生长旺季,遥感变量的空间变异是由LAD和叶片叶绿素含量之间的协调驱动的。这些发现为我们如何解释SIF和sifrobs、frnirvrsifrobs、FRNIRVR的景观水平变化,以及如何利用两者的空间变化来推断植物代谢的差异提供了重要的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信