Parallel Quantum Signal Processing Via Polynomial Factorization

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-27 DOI:10.22331/q-2025-08-27-1834
John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, Isaac L. Chuang
{"title":"Parallel Quantum Signal Processing Via Polynomial Factorization","authors":"John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, Isaac L. Chuang","doi":"10.22331/q-2025-08-27-1834","DOIUrl":null,"url":null,"abstract":"Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\\rho$, QSP enables the evaluation of nonlinear functions of the form $\\text{tr}(P(\\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\\text{tr} (P(\\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \\text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-27-1834","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\rho$, QSP enables the evaluation of nonlinear functions of the form $\text{tr}(P(\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\text{tr} (P(\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.
基于多项式分解的并行量子信号处理
量子信号处理(QSP)是一种构造线性算子的多项式变换的方法。应用于状态$\rho$的编码,QSP能够对多项式$P(x)$计算形式为$\text{tr}(P(\rho))$的非线性函数,它包含了熵和保真度等相关属性。然而,QSP是一个顺序算法:实现一个度数为$d$的多项式需要对编码进行$d$的查询,相当于查询深度$d$。在这里,我们通过开发并行量子信号处理来减少这些属性估计算法的深度。我们的算法将$\text{tr} (P(\rho))$在$k$系统上的计算并行化,并将查询深度降低到$d/k$,从而实现了QSP的一系列时空权衡。这提供了一种适用于分布式量子计算机的属性估计算法,并且以增加测量次数的因子$O(\text{poly}(d) 2^{O(k)})$为代价实现。我们通过将$P(x)$分解为$k次的$O(d/k)$较小多项式的乘积来实现此结果,每个多项式都与QSP并行实现,随后与交换测试一起相乘以重构$P(x)$。我们利用代数基本定理来描述可实现的多项式类,并演示了在典型问题中的应用,包括熵估计和配分函数评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信