Optimal compilation of parametrised quantum circuits

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-27 DOI:10.22331/q-2025-08-27-1828
John van de Wetering, Richie Yeung, Tuomas Laakkonen, Aleks Kissinger
{"title":"Optimal compilation of parametrised quantum circuits","authors":"John van de Wetering, Richie Yeung, Tuomas Laakkonen, Aleks Kissinger","doi":"10.22331/q-2025-08-27-1828","DOIUrl":null,"url":null,"abstract":"Parametrised quantum circuits contain phase gates whose phase is determined by a classical algorithm prior to running the circuit on a quantum device. Such circuits are used in variational algorithms like QAOA and VQE. In order for these algorithms to be as efficient as possible it is important that we use the fewest number of parameters. We show that, while the general problem of minimising the number of parameters is NP-hard, when we restrict to circuits that are Clifford apart from parametrised phase gates and where each parameter is used just once, we $can$ efficiently find the optimal parameter count. We show that when parameter transformations are required to be sufficiently well-behaved, the only rewrites that reduce parameters correspond to simple `fusions'. Using this we find that a previous circuit optimisation strategy by some of the authors [Kissinger, van de Wetering. PRA (2019)] finds the optimal number of parameters. Our proof uses the ZX-calculus. We also prove that the standard rewrite rules of the ZX-calculus suffice to prove any equality between parametrised Clifford circuits.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"27 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-27-1828","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Parametrised quantum circuits contain phase gates whose phase is determined by a classical algorithm prior to running the circuit on a quantum device. Such circuits are used in variational algorithms like QAOA and VQE. In order for these algorithms to be as efficient as possible it is important that we use the fewest number of parameters. We show that, while the general problem of minimising the number of parameters is NP-hard, when we restrict to circuits that are Clifford apart from parametrised phase gates and where each parameter is used just once, we $can$ efficiently find the optimal parameter count. We show that when parameter transformations are required to be sufficiently well-behaved, the only rewrites that reduce parameters correspond to simple `fusions'. Using this we find that a previous circuit optimisation strategy by some of the authors [Kissinger, van de Wetering. PRA (2019)] finds the optimal number of parameters. Our proof uses the ZX-calculus. We also prove that the standard rewrite rules of the ZX-calculus suffice to prove any equality between parametrised Clifford circuits.
参数化量子电路的优化编译
参数化量子电路包含相位门,其相位在量子器件上运行电路之前由经典算法确定。这种电路用于变分算法,如QAOA和VQE。为了使这些算法尽可能高效,我们使用最少数量的参数是很重要的。我们表明,虽然最小化参数数量的一般问题是np困难的,但当我们限制到除了参数化相门之外的Clifford电路并且每个参数只使用一次时,我们可以有效地找到最佳参数计数。我们表明,当参数转换被要求足够好的表现时,减少参数的唯一重写对应于简单的“融合”。使用这种方法,我们发现一些作者[Kissinger, van de Wetering]先前的电路优化策略。PRA(2019)]求参数的最优个数。我们的证明用的是zx微积分。我们还证明了zx微积分的标准重写规则足以证明参数化Clifford电路之间的任何等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信