Bioinspired Hydroxyapatite-Incorporated Polyacrylonitrile Nanofiber and Amoxicillin-Loaded Cellulose Acetate Bilayer Membrane with Tunable Osteoconductivity for Bone Regeneration

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-04-14 DOI:10.1002/cnma.202400576
Balaganesh Danagody, Neeraja Bose, Kalaivizhi Rajappan
{"title":"Bioinspired Hydroxyapatite-Incorporated Polyacrylonitrile Nanofiber and Amoxicillin-Loaded Cellulose Acetate Bilayer Membrane with Tunable Osteoconductivity for Bone Regeneration","authors":"Balaganesh Danagody,&nbsp;Neeraja Bose,&nbsp;Kalaivizhi Rajappan","doi":"10.1002/cnma.202400576","DOIUrl":null,"url":null,"abstract":"<p>Nanofiber-based materials show significant potential in bone tissue engineering, offering an ideal environment for cell adhesion, migration, and osteoinduction. Herein, hydroxyapatite (HA) is synthesized from <i>Sepia officinalis</i>, which is a naturally rich source of calcium and magnesium, and incorporated into polyacrylonitrile (PAN) nanofibers through electrospinning. The dual-layer membrane consists of an electrospun HA/PAN nanofiber top layer and an amoxicillin-loaded cellulose acetate (aCA) bottom layer, designed for controlled antibiotic release to provide antimicrobial protection essential for osteogenesis. The uniform distribution of HA nanoparticles within the PAN nanofibers enhances porosity and reduces hydrophobicity. The physicochemical properties and morphology of the membrane are characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, tensile strength analysis, and water contact angle measurements. In vitro studies confirm that the HA/PAN@aCA membrane supports the adhesion, proliferation, and differentiation of L929 fibroblasts and MG-63 osteosarcoma-derived cells, promoting mineralized nodule formation. Additionally, the scaffold demonstrates significant antimicrobial activity with controlled amoxicillin release, effectively preventing microbial contamination and facilitating bone regeneration. These findings highlight the potential of the HA/PAN@aCA dual-layered membrane as a promising biomaterial for bone tissue engineering, offering both structural integrity and bifunctionality for enhanced osteogenesis and infection control.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202400576","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiber-based materials show significant potential in bone tissue engineering, offering an ideal environment for cell adhesion, migration, and osteoinduction. Herein, hydroxyapatite (HA) is synthesized from Sepia officinalis, which is a naturally rich source of calcium and magnesium, and incorporated into polyacrylonitrile (PAN) nanofibers through electrospinning. The dual-layer membrane consists of an electrospun HA/PAN nanofiber top layer and an amoxicillin-loaded cellulose acetate (aCA) bottom layer, designed for controlled antibiotic release to provide antimicrobial protection essential for osteogenesis. The uniform distribution of HA nanoparticles within the PAN nanofibers enhances porosity and reduces hydrophobicity. The physicochemical properties and morphology of the membrane are characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, tensile strength analysis, and water contact angle measurements. In vitro studies confirm that the HA/PAN@aCA membrane supports the adhesion, proliferation, and differentiation of L929 fibroblasts and MG-63 osteosarcoma-derived cells, promoting mineralized nodule formation. Additionally, the scaffold demonstrates significant antimicrobial activity with controlled amoxicillin release, effectively preventing microbial contamination and facilitating bone regeneration. These findings highlight the potential of the HA/PAN@aCA dual-layered membrane as a promising biomaterial for bone tissue engineering, offering both structural integrity and bifunctionality for enhanced osteogenesis and infection control.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

羟基磷灰石-聚丙烯腈纳米纤维和阿莫西林-醋酸纤维素双层膜可调骨导电性用于骨再生
纳米纤维基材料在骨组织工程中显示出巨大的潜力,为细胞粘附、迁移和成骨提供了理想的环境。本研究以天然富含钙和镁的海Sepia officinalis为原料合成羟基磷灰石(HA),并通过静电纺丝将其加入聚丙烯腈(PAN)纳米纤维中。双层膜由静电纺丝HA/PAN纳米纤维顶层和阿莫西林醋酸纤维素(aCA)底层组成,旨在控制抗生素释放,为成骨提供必要的抗菌保护。聚丙烯腈纳米纤维中HA纳米颗粒的均匀分布提高了孔隙率,降低了疏水性。利用扫描电子显微镜、x射线光电子能谱、拉伸强度分析和水接触角测量对膜的物理化学性质和形态进行了表征。体外研究证实,HA/PAN@aCA膜支持L929成纤维细胞和MG-63骨肉瘤来源细胞的粘附、增殖和分化,促进矿化结节的形成。此外,该支架具有显著的抗菌活性,阿莫西林释放可控,有效防止微生物污染,促进骨再生。这些发现突出了HA/PAN@aCA双层膜作为骨组织工程中有前途的生物材料的潜力,它提供了结构完整性和双功能,以增强成骨和感染控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信