{"title":"Impact of Ammonia Content on Explosion of Methane‒Air Premixed Gas Duct with Varying Equivalence Ratios","authors":"Quan Wang, Wenyan Zhu, Rui Yang, Yaoyong Yang, Rui Li, Yu Ge, Dingyu Feng, Jianshe Xu","doi":"10.1007/s10494-025-00647-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a duct explosion experiment with an ammonia-methane-air mixture was conducted using a custom-built stainless steel flame acceleration duct (D = 120 mm, L/D = 45.8). The effects of varying ammonia concentrations (φ = 0%, 10%, 20%, 30%) and equivalence ratios (<i>Φ</i> = 0.9, 1.0, 1.1) on flame behavior were examined. The key aspects analyzed included the evolution of the explosion overpressure within the duct and the average propagation velocity of the deflagration flames. The results show that ammonia reduces the brightness of methane-air deflagration flames and that this reduction becomes more pronounced as the ammonia concentration (φ) increases, and the pressure‒time histories inside the duct have a three-peak structure (P<sub>b</sub>, P<sub>out</sub>, and P<sub>ext</sub>), which is caused by the burst of the vent cover, venting of burned mixtures, and counterflow flame generated by the external explosion, Additionally, rarefaction waves in the duct following discharge can lead to oscillatory combustion, and a \"backfire\" phenomenon is observed in all experiments. This study provides fundamental theoretical support for the promotion and application of ammonia fuel.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"763 - 780"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00647-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a duct explosion experiment with an ammonia-methane-air mixture was conducted using a custom-built stainless steel flame acceleration duct (D = 120 mm, L/D = 45.8). The effects of varying ammonia concentrations (φ = 0%, 10%, 20%, 30%) and equivalence ratios (Φ = 0.9, 1.0, 1.1) on flame behavior were examined. The key aspects analyzed included the evolution of the explosion overpressure within the duct and the average propagation velocity of the deflagration flames. The results show that ammonia reduces the brightness of methane-air deflagration flames and that this reduction becomes more pronounced as the ammonia concentration (φ) increases, and the pressure‒time histories inside the duct have a three-peak structure (Pb, Pout, and Pext), which is caused by the burst of the vent cover, venting of burned mixtures, and counterflow flame generated by the external explosion, Additionally, rarefaction waves in the duct following discharge can lead to oscillatory combustion, and a "backfire" phenomenon is observed in all experiments. This study provides fundamental theoretical support for the promotion and application of ammonia fuel.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.