A Comprehensive Thermoacoustic Framework Based on Doak’s Momentum Potential Theory – Application to Combustion Noise of the VOLVO Test Rig from LES Data

IF 2.4 3区 工程技术 Q3 MECHANICS
Raffaele D’Aniello, Philipp Koob, Hanna Reinhardt, Christian Hasse, Karsten Knobloch
{"title":"A Comprehensive Thermoacoustic Framework Based on Doak’s Momentum Potential Theory – Application to Combustion Noise of the VOLVO Test Rig from LES Data","authors":"Raffaele D’Aniello,&nbsp;Philipp Koob,&nbsp;Hanna Reinhardt,&nbsp;Christian Hasse,&nbsp;Karsten Knobloch","doi":"10.1007/s10494-025-00662-7","DOIUrl":null,"url":null,"abstract":"<div><p>An extension to multi-species and reacting flows of Doak’s “Momentum Potential Theory of Energy Flux carried by Momentum Fluctuations” is proposed as a general and comprehensive framework for thermoacoustic characterization of combustor systems. This framework is applied here for the first time in its extended form to analyze simulation data relative to the flow in a bluff-body stabilized combustor, in stable operating conditions. The proposed thermoacoustic model is able to: (i) unambiguously separate turbulent, acoustic, thermal, and mixture fluctuations; (ii) effectively describe the interaction between turbulent, acoustic, thermal, and mixture dynamics; (iii) highlight the main characteristics of the combustion noise emitted by the systems. By means of the performed analysis, the thermal phenomena are found to dominate the dynamics interaction. All convective quantities interact in the shear layer at the flame border and feature a similar, low-frequency spectral behavior. As expected, the acoustics does not couple directly with the convective quantities, due to the considered stable conditions. Although, the acoustic spectrum is strongly characterized by three peaks, which can be attributed to secondary, high-frequency thermal fluctuations. The modes related to these peaks can be seen, therefore, as a representation of the combustion noise emitted by the flame. The new terms related to the mixture do not seem to effectively contribute to the dynamics interaction and to the acoustic production, at least for the considered configuration and operating conditions.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"829 - 861"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00662-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00662-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

An extension to multi-species and reacting flows of Doak’s “Momentum Potential Theory of Energy Flux carried by Momentum Fluctuations” is proposed as a general and comprehensive framework for thermoacoustic characterization of combustor systems. This framework is applied here for the first time in its extended form to analyze simulation data relative to the flow in a bluff-body stabilized combustor, in stable operating conditions. The proposed thermoacoustic model is able to: (i) unambiguously separate turbulent, acoustic, thermal, and mixture fluctuations; (ii) effectively describe the interaction between turbulent, acoustic, thermal, and mixture dynamics; (iii) highlight the main characteristics of the combustion noise emitted by the systems. By means of the performed analysis, the thermal phenomena are found to dominate the dynamics interaction. All convective quantities interact in the shear layer at the flame border and feature a similar, low-frequency spectral behavior. As expected, the acoustics does not couple directly with the convective quantities, due to the considered stable conditions. Although, the acoustic spectrum is strongly characterized by three peaks, which can be attributed to secondary, high-frequency thermal fluctuations. The modes related to these peaks can be seen, therefore, as a representation of the combustion noise emitted by the flame. The new terms related to the mixture do not seem to effectively contribute to the dynamics interaction and to the acoustic production, at least for the considered configuration and operating conditions.

基于Doak动量势理论的综合热声框架——基于LES数据的VOLVO试验台燃烧噪声分析
将Doak的“动量涨落携带能量通量的动量势理论”扩展到多物质流和反应流,作为燃烧室系统热声表征的一般和综合框架。本文首次将该框架以扩展形式应用于分析稳定工况下崖体稳定燃烧室内流动的模拟数据。所提出的热声模型能够:(i)明确地分离湍流、声学、热和混合波动;(ii)有效地描述湍流、声学、热和混合动力学之间的相互作用;(iii)突出系统发出的燃烧噪音的主要特征。通过分析,发现热现象在动力学相互作用中起主导作用。所有对流量在火焰边界的剪切层中相互作用,并具有相似的低频频谱行为。正如预期的那样,由于考虑了稳定的条件,声学并不直接与对流量耦合。尽管如此,声波频谱具有明显的三峰特征,这可归因于二次高频热波动。因此,与这些峰相关的模态可以看作是火焰发出的燃烧噪声的表示。与混合物相关的新术语似乎并没有有效地促进动力学相互作用和声学产生,至少在考虑的配置和操作条件下是这样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信