{"title":"Effect of coolant on wall heat flux in premixed turbulent combustion","authors":"Chenlin Guo, Kunlin Li, Lipo Wang","doi":"10.1007/s10494-025-00672-5","DOIUrl":null,"url":null,"abstract":"<div><p>Inside the engine combustor, addition of the coolant from the wall makes the physics of flame-wall interaction (FWI) even more complex. Considering the application relevance, wall heat flux is analyzed and modeled. Under various flow conditions, the model predictions satisfactorily match the direct numerical simulation (DNS) results. The effects of coolant on the entrained flame and head-on flame are clearly different. Statistics of the near-wall flame orientation and curvature are sensitive to the coolant blowing ratio (BR). The entrained flame is more likely to be swept away, while the head-on flame is more stable. Both the model and simulation indicate consistently that an increase in BR, although quantitatively small, will greatly reduce the wall heat flux induced by the head-on flame. In contrast, the change of wall heat flux induced by the entrained flame is much smaller. Since most of the near-wall flame is head-on, the BR effect is significant. Additionally, in an a priori large eddy simulation (LES) study, the model predictions show better consistency with DNS, in comparison with the most commonly used turbulence sub-grid models.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"927 - 953"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00672-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Inside the engine combustor, addition of the coolant from the wall makes the physics of flame-wall interaction (FWI) even more complex. Considering the application relevance, wall heat flux is analyzed and modeled. Under various flow conditions, the model predictions satisfactorily match the direct numerical simulation (DNS) results. The effects of coolant on the entrained flame and head-on flame are clearly different. Statistics of the near-wall flame orientation and curvature are sensitive to the coolant blowing ratio (BR). The entrained flame is more likely to be swept away, while the head-on flame is more stable. Both the model and simulation indicate consistently that an increase in BR, although quantitatively small, will greatly reduce the wall heat flux induced by the head-on flame. In contrast, the change of wall heat flux induced by the entrained flame is much smaller. Since most of the near-wall flame is head-on, the BR effect is significant. Additionally, in an a priori large eddy simulation (LES) study, the model predictions show better consistency with DNS, in comparison with the most commonly used turbulence sub-grid models.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.