Alejandro Montoya Santamaría, Tyler Buchanan, Francesco Fico, Ivan Langella, Richard P. Dwight, Nguyen Anh Khoa Doan
{"title":"Data-Driven Turbulence Modelling for Magnetohydrodynamic Flows in Annular Pipes","authors":"Alejandro Montoya Santamaría, Tyler Buchanan, Francesco Fico, Ivan Langella, Richard P. Dwight, Nguyen Anh Khoa Doan","doi":"10.1007/s10494-025-00668-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present a data-driven approach to Reynolds-averaged Navier-Stokes (RANS) turbulence closure modelling in magnetohydrodynamic (MHD) flows. In these flows the magnetic field interacting with the conductive fluid induces unconventional turbulence states such as quasi two-dimensional (2D) turbulence, and turbulence suppression, which are poorly represented by standard Boussinesq models. Our data-driven approach uses time-averaged Large Eddy Simulation (LES) data of annular pipe flows, at different Hartmann numbers, to derive corrections for the <span>\\(k\\)</span>-<span>\\(\\omega\\)</span> SST model. Correction fields are obtained by injecting time averaged LES fields into the MHD RANS equations, and examining the remaining residuals. The correction to the Reynolds-stress anisotropy is approximated with a modified Tensor Basis Neural Network (TBNN). We extend the generalised eddy hypothesis with a traceless antisymmetric tensor representation of the Lorentz force to obtain MHD flow features, thus keeping Galilean and frame invariance while including MHD effects in the turbulence model. The resulting data-driven models are shown to reduce errors in the mean flow, and to generalise to annular flow cases with different Hartmann numbers from those of the training cases.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"567 - 602"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00668-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00668-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a data-driven approach to Reynolds-averaged Navier-Stokes (RANS) turbulence closure modelling in magnetohydrodynamic (MHD) flows. In these flows the magnetic field interacting with the conductive fluid induces unconventional turbulence states such as quasi two-dimensional (2D) turbulence, and turbulence suppression, which are poorly represented by standard Boussinesq models. Our data-driven approach uses time-averaged Large Eddy Simulation (LES) data of annular pipe flows, at different Hartmann numbers, to derive corrections for the \(k\)-\(\omega\) SST model. Correction fields are obtained by injecting time averaged LES fields into the MHD RANS equations, and examining the remaining residuals. The correction to the Reynolds-stress anisotropy is approximated with a modified Tensor Basis Neural Network (TBNN). We extend the generalised eddy hypothesis with a traceless antisymmetric tensor representation of the Lorentz force to obtain MHD flow features, thus keeping Galilean and frame invariance while including MHD effects in the turbulence model. The resulting data-driven models are shown to reduce errors in the mean flow, and to generalise to annular flow cases with different Hartmann numbers from those of the training cases.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.