{"title":"Harnessing AI-driven modeling to assess the impact of alternative materials on the compressive strength of concrete mix design","authors":"Rishabh Kashyap, Saket Rusia, Ayush Sharma, Avanish Patel","doi":"10.1007/s42107-025-01432-6","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete, as the most extensively used construction material, contributes significantly to environmental degradation due to the high consumption of natural resources and carbon dioxide emissions. To foster sustainable development, this study investigates the incorporation of alternative materials Fly Ash and Rice Husk Ash as partial replacements for cement in M25 grade concrete. The research evaluates both the compressive strength and workability of these modified mixes. Furthermore, machine learning techniques, including XGBoost, Random Forest, and Support Vector Machine (SVM), were employed to predict the compressive strength based on experimental data. A user-friendly prediction system was developed to enable analysis by selecting either Fly Ash or Rice Husk Ash as the replacement material. Among the models used, XGBoost outperformed the others in terms of predictive accuracy, achieving the highest <span>\\(\\hbox {R}^{2}\\)</span> score and lowest error metrics. The results indicate that these alternative materials can enhance concrete properties at specific replacement levels, and that machine learning models, particularly XGBoost, offer accurate and efficient predictions. This study underscores the potential of integrating sustainable materials with data-driven modeling for eco-friendly and performance-optimized concrete mix designs.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 10","pages":"4411 - 4432"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01432-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete, as the most extensively used construction material, contributes significantly to environmental degradation due to the high consumption of natural resources and carbon dioxide emissions. To foster sustainable development, this study investigates the incorporation of alternative materials Fly Ash and Rice Husk Ash as partial replacements for cement in M25 grade concrete. The research evaluates both the compressive strength and workability of these modified mixes. Furthermore, machine learning techniques, including XGBoost, Random Forest, and Support Vector Machine (SVM), were employed to predict the compressive strength based on experimental data. A user-friendly prediction system was developed to enable analysis by selecting either Fly Ash or Rice Husk Ash as the replacement material. Among the models used, XGBoost outperformed the others in terms of predictive accuracy, achieving the highest \(\hbox {R}^{2}\) score and lowest error metrics. The results indicate that these alternative materials can enhance concrete properties at specific replacement levels, and that machine learning models, particularly XGBoost, offer accurate and efficient predictions. This study underscores the potential of integrating sustainable materials with data-driven modeling for eco-friendly and performance-optimized concrete mix designs.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.