Deep Enhancement in Supplychain Management with Adaptive Serial Cascaded Autoencoder with Long Short Term Memory and Multi-layered Perceptron Framework
{"title":"Deep Enhancement in Supplychain Management with Adaptive Serial Cascaded Autoencoder with Long Short Term Memory and Multi-layered Perceptron Framework","authors":"Ashok Kumar Sarkar, Anupam Das","doi":"10.1007/s40745-024-00576-7","DOIUrl":null,"url":null,"abstract":"<div><p>Recognizing and reducing risk is a major part of Supply Chain Management (SCM). Several companies are invested in Supply Chain Risk Management (SCRM) and they have the knowledge about the procurement occupancies within their companies and take steps to ensure this potent source of strategic value. Additionally, these types of companies yield the highest returns with the lowest amount of financial risk. Moreover, reducing financial risk in the SCM network requires thoughtful analysis and a proactive strategy. Hence, this task aims to make a financial risk assessment in SCM with deep learning techniques based on big data. Financial risk-related big data is collected from the Kaggle database and utilized in the data transformation phase. The transformed data is employed for evaluating the financial risk with the support of an Adaptive Serial Cascaded Autoencoder with Long Short-Term Memory and Multi-Layered Perceptron (ASCALSMLP). Here, the parameters for the deep learning techniques like LSTM and MLP were tuned by the hybrid Sandpiper Galactic Swarm Optimization (SGSO) algorithm to enhance the efficacy of the offered approach. From the results analysis, the accuracy of the developed model is 91.12% better than DHOA, 92.5% more than COA, 93.75% improved than GSO, and 94.62% superior to SOA models. Therefore, the results from the developed approach demonstrate effective prediction of financial risks.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 5","pages":"1577 - 1606"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00576-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing and reducing risk is a major part of Supply Chain Management (SCM). Several companies are invested in Supply Chain Risk Management (SCRM) and they have the knowledge about the procurement occupancies within their companies and take steps to ensure this potent source of strategic value. Additionally, these types of companies yield the highest returns with the lowest amount of financial risk. Moreover, reducing financial risk in the SCM network requires thoughtful analysis and a proactive strategy. Hence, this task aims to make a financial risk assessment in SCM with deep learning techniques based on big data. Financial risk-related big data is collected from the Kaggle database and utilized in the data transformation phase. The transformed data is employed for evaluating the financial risk with the support of an Adaptive Serial Cascaded Autoencoder with Long Short-Term Memory and Multi-Layered Perceptron (ASCALSMLP). Here, the parameters for the deep learning techniques like LSTM and MLP were tuned by the hybrid Sandpiper Galactic Swarm Optimization (SGSO) algorithm to enhance the efficacy of the offered approach. From the results analysis, the accuracy of the developed model is 91.12% better than DHOA, 92.5% more than COA, 93.75% improved than GSO, and 94.62% superior to SOA models. Therefore, the results from the developed approach demonstrate effective prediction of financial risks.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.