{"title":"Scale Resolving Methods for Aeronautical Flows toward the Era of “Industrial LES”","authors":"Kozo Fujii, Soshi Kawai, Datta Gaitonde","doi":"10.1007/s10494-025-00659-2","DOIUrl":null,"url":null,"abstract":"<div><p>Scale-resolving simulations possess considerable benefits over modeled approaches because of their ability to access the underlying nonlinear fluid dynamics, and thus to predict not only the correct phenomenology, but also to generate insights on strategies to mitigate or eliminate undesirable features. The expense of resolving all pertinent turbulent scales becomes prohibitive however, as the size of the problem, typically measured by the Reynolds number based on a suitable set of reference parameters, becomes large, as is the case with flows of industrial interest such as full aircraft or their complex subsystems. This paper provides an assessment of scale-resolving methods, including some of the main benefits as well as barriers for use on large problems, together with a perspective on historical and recent trends that appear promising in the quest for routine industrial use. The factors that constitute the biggest hurdles to achieving acceptable wall-clock times and costs include meshing of complicated geometries, numerical schemes that are robust as well as accurate, suitable initial and boundary conditions, economical yet appropriate representation of near-wall turbulence, code parallelism, scalability and portability, and post-processing of the resulting big datasets. Considerations for these interrelated aspects are highlighted in the context of several 3D problems of increasing complexity, from wing sections without and with sweep, to aircraft wakes, propulsion subsystems, scramjet flowpaths and finally, full aircraft including empennages. Collectively, these examples feature the benefits of scale-resolving simulations. An illustrative approach that has reached a relatively high level of maturity using automatic mesh generation, a non-dissipative yet robust scheme, wall-modeling of turbulence, superior scalability and requiring little user intervention beyond providing the surface model, is used to demonstrate the potential of scale-resolving simulations for industry, achievable at modest cost and in reasonable wall-clock time.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 2","pages":"405 - 446"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00659-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00659-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scale-resolving simulations possess considerable benefits over modeled approaches because of their ability to access the underlying nonlinear fluid dynamics, and thus to predict not only the correct phenomenology, but also to generate insights on strategies to mitigate or eliminate undesirable features. The expense of resolving all pertinent turbulent scales becomes prohibitive however, as the size of the problem, typically measured by the Reynolds number based on a suitable set of reference parameters, becomes large, as is the case with flows of industrial interest such as full aircraft or their complex subsystems. This paper provides an assessment of scale-resolving methods, including some of the main benefits as well as barriers for use on large problems, together with a perspective on historical and recent trends that appear promising in the quest for routine industrial use. The factors that constitute the biggest hurdles to achieving acceptable wall-clock times and costs include meshing of complicated geometries, numerical schemes that are robust as well as accurate, suitable initial and boundary conditions, economical yet appropriate representation of near-wall turbulence, code parallelism, scalability and portability, and post-processing of the resulting big datasets. Considerations for these interrelated aspects are highlighted in the context of several 3D problems of increasing complexity, from wing sections without and with sweep, to aircraft wakes, propulsion subsystems, scramjet flowpaths and finally, full aircraft including empennages. Collectively, these examples feature the benefits of scale-resolving simulations. An illustrative approach that has reached a relatively high level of maturity using automatic mesh generation, a non-dissipative yet robust scheme, wall-modeling of turbulence, superior scalability and requiring little user intervention beyond providing the surface model, is used to demonstrate the potential of scale-resolving simulations for industry, achievable at modest cost and in reasonable wall-clock time.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.