{"title":"Nonlinear mixed skew and \\(\\eta \\)-Jordan derivations on \\(*\\)-algebras","authors":"Asma Ali, Shakiv Ali, Mohd Tasleem","doi":"10.1007/s11565-025-00608-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathfrak {E}\\)</span> be a unital <span>\\(*\\)</span>-algebra and <span>\\(\\eta \\ne -1\\)</span> be a nonzero scalar. This paper establishes that if a nonlinear mapping <span>\\(\\zeta : \\mathfrak {E} \\rightarrow \\mathfrak {E}\\)</span> satisfies <span>\\( \\zeta (\\mathcal {U} \\bullet \\mathcal {V} \\circ _\\eta \\mathcal {W})=\\zeta (\\mathcal {U}) \\bullet \\mathcal {V} \\circ _\\eta \\mathcal {W}+\\mathcal {U} \\bullet \\zeta (\\mathcal {V}) \\circ _\\eta \\mathcal {W}+\\mathcal {U} \\bullet \\mathcal {V} \\circ _\\eta \\zeta (\\mathcal {W})\\)</span> for all <span>\\( \\mathcal {U}, \\mathcal {V}, \\mathcal {W} \\in \\mathfrak {E}\\)</span>, then <span>\\(\\zeta \\)</span> is an additive <span>\\(*\\)</span>-derivation and fulfils <span>\\(\\zeta (\\eta \\mathcal {U})=\\eta \\zeta (\\mathcal {U})\\)</span> for all <span>\\(\\mathcal {U} \\in \\mathfrak {E}.\\)</span> Additionally, we extend this result to various other algebras.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00608-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\mathfrak {E}\) be a unital \(*\)-algebra and \(\eta \ne -1\) be a nonzero scalar. This paper establishes that if a nonlinear mapping \(\zeta : \mathfrak {E} \rightarrow \mathfrak {E}\) satisfies \( \zeta (\mathcal {U} \bullet \mathcal {V} \circ _\eta \mathcal {W})=\zeta (\mathcal {U}) \bullet \mathcal {V} \circ _\eta \mathcal {W}+\mathcal {U} \bullet \zeta (\mathcal {V}) \circ _\eta \mathcal {W}+\mathcal {U} \bullet \mathcal {V} \circ _\eta \zeta (\mathcal {W})\) for all \( \mathcal {U}, \mathcal {V}, \mathcal {W} \in \mathfrak {E}\), then \(\zeta \) is an additive \(*\)-derivation and fulfils \(\zeta (\eta \mathcal {U})=\eta \zeta (\mathcal {U})\) for all \(\mathcal {U} \in \mathfrak {E}.\) Additionally, we extend this result to various other algebras.
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.