{"title":"QNN framework based multiclass classification for downlink NOMA detectors","authors":"Hye Yeong Lee;Man Hee Lee;Soo Young Shin","doi":"10.23919/JCN.2025.000045","DOIUrl":null,"url":null,"abstract":"Quantum neural networks (QNNs) have attracted significant attention recently, primarily because of their potential to address complex problems deemed difficult for traditional computational methods. This study explores the viability of QNN in handling multiclass classification tasks in downlink nonorthogonal multiple access (NOMA) frameworks. The investigation includes a design of QNN framework and performance evaluation of a QNN-based NOMA detector, integrating maximum likelihood (ML), successive interference cancellation (SIC), and rotated ML (RML) methods. A QNN framework was configured for all three detectors, and a comparative analysis was conducted in terms of loss, accuracy, and testing across varied signal-to-noise ratio (SNR) levels and power allocation coefficients, considering NOMA-specific characteristics. Furthermore, the computational complexity of each detector was analyzed within the proposed framework.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"27 4","pages":"231-240"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142625","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11142625/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum neural networks (QNNs) have attracted significant attention recently, primarily because of their potential to address complex problems deemed difficult for traditional computational methods. This study explores the viability of QNN in handling multiclass classification tasks in downlink nonorthogonal multiple access (NOMA) frameworks. The investigation includes a design of QNN framework and performance evaluation of a QNN-based NOMA detector, integrating maximum likelihood (ML), successive interference cancellation (SIC), and rotated ML (RML) methods. A QNN framework was configured for all three detectors, and a comparative analysis was conducted in terms of loss, accuracy, and testing across varied signal-to-noise ratio (SNR) levels and power allocation coefficients, considering NOMA-specific characteristics. Furthermore, the computational complexity of each detector was analyzed within the proposed framework.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.