Zelu Qi , Ping Shi , Shuqi Wang , Chaoyang Zhang , Fei Zhao , Zefeng Ying , Da Pan , Xi Yang , Zheqi He , Teng Dai
{"title":"T2VEval: Benchmark dataset and objective evaluation method for T2V-generated videos","authors":"Zelu Qi , Ping Shi , Shuqi Wang , Chaoyang Zhang , Fei Zhao , Zefeng Ying , Da Pan , Xi Yang , Zheqi He , Teng Dai","doi":"10.1016/j.displa.2025.103178","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in text-to-video (T2V) technology, as demonstrated by models such as Runway Gen-3, Pika, Sora, and Kling, have significantly broadened the applicability and popularity of the technology. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of T2V-generated videos and optimize video generation models. However, assessing the quality of text-to-video outputs remain challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed T2VEval-Bench, a multi-dimensional benchmark dataset for text-to-video quality evaluation, which contains 148 textual prompts and 1,783 videos generated by 13 T2V models. To ensure a comprehensive evaluation, we scored each video on four dimensions in the subjective experiment, which are overall impression, text–video consistency, realness, and technical quality. Based on T2VEval-Bench, we developed T2VEval, a multi-branch fusion scheme for T2V quality evaluation. T2VEval assesses videos across three branches: text–video consistency, realness, and technical quality. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large language model. Additionally, we implemented a divide-and-conquer training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103178"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193822500215X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in text-to-video (T2V) technology, as demonstrated by models such as Runway Gen-3, Pika, Sora, and Kling, have significantly broadened the applicability and popularity of the technology. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of T2V-generated videos and optimize video generation models. However, assessing the quality of text-to-video outputs remain challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed T2VEval-Bench, a multi-dimensional benchmark dataset for text-to-video quality evaluation, which contains 148 textual prompts and 1,783 videos generated by 13 T2V models. To ensure a comprehensive evaluation, we scored each video on four dimensions in the subjective experiment, which are overall impression, text–video consistency, realness, and technical quality. Based on T2VEval-Bench, we developed T2VEval, a multi-branch fusion scheme for T2V quality evaluation. T2VEval assesses videos across three branches: text–video consistency, realness, and technical quality. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large language model. Additionally, we implemented a divide-and-conquer training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.