Learning-enhanced variational regularization for electrical impedance tomography via Calderon's method

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Li , Kwancheol Shin , Zhi Zhou
{"title":"Learning-enhanced variational regularization for electrical impedance tomography via Calderon's method","authors":"Kai Li ,&nbsp;Kwancheol Shin ,&nbsp;Zhi Zhou","doi":"10.1016/j.jcp.2025.114309","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to numerically solve the two-dimensional electrical impedance tomography (EIT) with Cauchy data. This inverse problem is highly challenging due to its severe ill-posed nature and strong nonlinearity, which necessitates appropriate regularization strategies. Choosing a regularization approach that effectively incorporates the <em>a priori</em> information of the conductivity distribution (or its contrast) is therefore essential. In this work, we propose a deep learning-based method to capture the <em>a priori</em> information about the shape and location of the unknown contrast using Calderón’s method. The learned <em>a priori</em> information is then used to construct the regularization functional of the variational regularization method for solving the inverse problem. The resulting regularized variational problem for EIT reconstruction is then solved using the Gauss-Newton method. Extensive numerical experiments demonstrate that the proposed inversion algorithm achieves accurate reconstruction results, even in high-contrast cases, and exhibits strong generalization capabilities. Additionally, some stability and convergence analysis of the variational regularization method underscores the importance of incorporating <em>a priori</em> information about the support of the unknown contrast.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114309"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125005923","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to numerically solve the two-dimensional electrical impedance tomography (EIT) with Cauchy data. This inverse problem is highly challenging due to its severe ill-posed nature and strong nonlinearity, which necessitates appropriate regularization strategies. Choosing a regularization approach that effectively incorporates the a priori information of the conductivity distribution (or its contrast) is therefore essential. In this work, we propose a deep learning-based method to capture the a priori information about the shape and location of the unknown contrast using Calderón’s method. The learned a priori information is then used to construct the regularization functional of the variational regularization method for solving the inverse problem. The resulting regularized variational problem for EIT reconstruction is then solved using the Gauss-Newton method. Extensive numerical experiments demonstrate that the proposed inversion algorithm achieves accurate reconstruction results, even in high-contrast cases, and exhibits strong generalization capabilities. Additionally, some stability and convergence analysis of the variational regularization method underscores the importance of incorporating a priori information about the support of the unknown contrast.
基于Calderon方法的电阻抗断层扫描的学习增强变分正则化
本文旨在利用柯西数据对二维电阻抗层析成像(EIT)进行数值求解。这一反问题由于其严重的病态性质和强非线性而具有很高的挑战性,这就需要适当的正则化策略。因此,选择一种有效地结合电导率分布(或其对比)的先验信息的正则化方法至关重要。在这项工作中,我们提出了一种基于深度学习的方法,使用Calderón的方法来捕获关于未知对比度的形状和位置的先验信息。然后利用学习到的先验信息构造变分正则化方法的正则化泛函来求解逆问题。然后用高斯-牛顿方法求解了EIT重构的正则变分问题。大量的数值实验表明,即使在高对比度的情况下,所提出的反演算法也能获得准确的重建结果,并且具有较强的泛化能力。此外,变分正则化方法的一些稳定性和收敛性分析强调了纳入关于未知对比支持的先验信息的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信