Nikolay Bazhenov , Vittorio Cipriani , Sanjay Jain , Luca San Mauro , Frank Stephan
{"title":"Classifying different criteria for learning algebraic structures","authors":"Nikolay Bazhenov , Vittorio Cipriani , Sanjay Jain , Luca San Mauro , Frank Stephan","doi":"10.1016/j.apal.2025.103648","DOIUrl":null,"url":null,"abstract":"<div><div>In the last years there has been a growing interest in the study of learning problems associated with algebraic structures. The framework we use models the scenario in which a learner is given larger and larger fragments of a structure from a given target family and is required to output an hypothesis about the structure's isomorphism type. So far researchers focused on <strong>Ex</strong>-learning, in which the learner is asked to eventually stabilize to the correct hypothesis, and on restrictions where the learner is allowed to change the hypothesis a fixed number of times. Yet, other learning paradigms coming from classical algorithmic learning theory remained unexplored. We study the ‘‘learning power’’ of such criteria, comparing them via descriptive-set-theoretic tools thanks to the novel notion of <em>E</em>-learnability. The main outcome of this paper is that such criteria admit natural syntactic characterizations in terms of infinitary formulas analogous to the one given for <strong>Ex</strong>-learning in <span><span>[8]</span></span>. Such characterizations give a powerful method to understand whether a family of structures is learnable with respect to the desired criterion.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"177 1","pages":"Article 103648"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000971","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years there has been a growing interest in the study of learning problems associated with algebraic structures. The framework we use models the scenario in which a learner is given larger and larger fragments of a structure from a given target family and is required to output an hypothesis about the structure's isomorphism type. So far researchers focused on Ex-learning, in which the learner is asked to eventually stabilize to the correct hypothesis, and on restrictions where the learner is allowed to change the hypothesis a fixed number of times. Yet, other learning paradigms coming from classical algorithmic learning theory remained unexplored. We study the ‘‘learning power’’ of such criteria, comparing them via descriptive-set-theoretic tools thanks to the novel notion of E-learnability. The main outcome of this paper is that such criteria admit natural syntactic characterizations in terms of infinitary formulas analogous to the one given for Ex-learning in [8]. Such characterizations give a powerful method to understand whether a family of structures is learnable with respect to the desired criterion.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.