100 m PM2.5 mapping from SDGSAT-1 TOA reflectance: Model development and -evaluation

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Kaixu Bai , Zhe Zheng , Songyun Qiu , Ke Li , Liuqing Shao , Chaoshun Liu , Ni-Bin Chang
{"title":"100 m PM2.5 mapping from SDGSAT-1 TOA reflectance: Model development and -evaluation","authors":"Kaixu Bai ,&nbsp;Zhe Zheng ,&nbsp;Songyun Qiu ,&nbsp;Ke Li ,&nbsp;Liuqing Shao ,&nbsp;Chaoshun Liu ,&nbsp;Ni-Bin Chang","doi":"10.1016/j.rse.2025.114977","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite-based fine-resolution (∼100 m) PM<sub>2.5</sub> mapping remains challenging because broadband multispectral imagery struggles to decouple land and atmospheric signals, limiting accurate local emission source detection in regions with sparse ground monitoring networks. Here, we introduce LAD-GAT, a novel deep learning framework for 100 m-resolution PM<sub>2.5</sub> estimation from SDGSAT-1––the first science satellite mission dedicated to the UN Sustainable Development Goals. Specifically, LAD-GAT builds a high-dimensional scene-attribute graph by combining PM<sub>2.5</sub>-relevant geographical features, meteorological dynamics, top-of-the-atmosphere (TOA) reflectance, and estimated surface reflectance (SR). A specialized land-atmosphere decoupling (LAD) module is introduced to separate latent aerosol signals from ground surface contributions, and a graph attention network (GAT) models nonlinear associations between in-situ PM<sub>2.5</sub> observations and the input graph structure. In 10-fold cross-validation, LAD-GAT achieved RMSE = 5.042 μg m<sup>−3</sup> (R<sup>2</sup> = 0.875) using SDGSAT-1 TOA reflectance, and RMSE = 9.428 μg m<sup>−3</sup> (R<sup>2</sup> = 0.862) with Sentinel-2 TOA reflectance. Incorporating daily SR yielded an 8.68 % accuracy gain over TOA reflectance alone and outperformed multi-day composites by 7.27 %, highlighting the benefit of accounting for SR dynamics in fine-scale PM<sub>2.5</sub> mapping. Overall, leveraging the proposed novel LAD-GAT method, SDGSAT-derived PM<sub>2.5</sub> estimates rival those from Sentinel-2, providing fine-scale data to better support SDG 11.6.2 monitoring and targeted air-quality interventions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"330 ","pages":"Article 114977"},"PeriodicalIF":11.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003815","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite-based fine-resolution (∼100 m) PM2.5 mapping remains challenging because broadband multispectral imagery struggles to decouple land and atmospheric signals, limiting accurate local emission source detection in regions with sparse ground monitoring networks. Here, we introduce LAD-GAT, a novel deep learning framework for 100 m-resolution PM2.5 estimation from SDGSAT-1––the first science satellite mission dedicated to the UN Sustainable Development Goals. Specifically, LAD-GAT builds a high-dimensional scene-attribute graph by combining PM2.5-relevant geographical features, meteorological dynamics, top-of-the-atmosphere (TOA) reflectance, and estimated surface reflectance (SR). A specialized land-atmosphere decoupling (LAD) module is introduced to separate latent aerosol signals from ground surface contributions, and a graph attention network (GAT) models nonlinear associations between in-situ PM2.5 observations and the input graph structure. In 10-fold cross-validation, LAD-GAT achieved RMSE = 5.042 μg m−3 (R2 = 0.875) using SDGSAT-1 TOA reflectance, and RMSE = 9.428 μg m−3 (R2 = 0.862) with Sentinel-2 TOA reflectance. Incorporating daily SR yielded an 8.68 % accuracy gain over TOA reflectance alone and outperformed multi-day composites by 7.27 %, highlighting the benefit of accounting for SR dynamics in fine-scale PM2.5 mapping. Overall, leveraging the proposed novel LAD-GAT method, SDGSAT-derived PM2.5 estimates rival those from Sentinel-2, providing fine-scale data to better support SDG 11.6.2 monitoring and targeted air-quality interventions.
基于SDGSAT-1 TOA反射率的100 m PM2.5制图:模型开发和评估
基于卫星的细分辨率(~ 100米)PM2.5制图仍然具有挑战性,因为宽带多光谱图像难以解耦陆地和大气信号,限制了地面监测网络稀疏地区精确的局部排放源检测。在这里,我们介绍了一种新的深度学习框架,用于从SDGSAT-1(致力于联合国可持续发展目标的首个科学卫星任务)中估计100米分辨率的PM2.5。具体而言,ladg - gat结合pm2.5相关地理特征、气象动态、大气顶(TOA)反射率和估算的地表反射率(SR)构建了高维场景属性图。引入陆地-大气解耦(LAD)模块分离潜在气溶胶信号和地表贡献信号,并利用图关注网络(GAT)模型模拟PM2.5现场观测值与输入图结构之间的非线性关联。在10倍交叉验证中,使用SDGSAT-1的TOA反射率,ladg - gat的RMSE = 5.042 μ m−3 (R2 = 0.875),使用Sentinel-2的TOA反射率,RMSE = 9.428 μ m−3 (R2 = 0.862)。与单独的TOA反射率相比,纳入日SR的精度提高了8.68%,比多日复合材料的精度提高了7.27%,突出了在细尺度PM2.5制图中考虑SR动态的好处。总体而言,利用提出的新型ladgat方法,sdgsat得出的PM2.5估计值可与Sentinel-2的估计值相媲美,提供精细数据,以更好地支持可持续发展目标11.6.2的监测和有针对性的空气质量干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信