{"title":"A comparative study of multi-algorithm optimization for inventory analytics in supply chains","authors":"Oussama Zabraoui, Yahya Hmamou , Anas Chafi , Salaheddine Kammouri Alami","doi":"10.1016/j.sca.2025.100154","DOIUrl":null,"url":null,"abstract":"<div><div>Effective management of inventory is essential for achieving high service levels, minimizing costs, and maintaining the overall resilience of retail supply chains—particularly in complex, real-world environments. Conventional strategies often prove inadequate because they rely on rigid assumptions or single-technique models that fail to accommodate practical challenges such as fluctuating demand, unpredictable lead times, and disruptions in supply.</div><div>To bridge this gap, our research undertakes a comprehensive comparison of multiple approaches — including Reinforcement Learning (RL), Genetic Algorithms (GA), Deep Learning (DL), Machine Learning (ML), and heuristic techniques — evaluated within a consistent and realistic testing framework based on the Walmart M5 dataset. This dataset offers a robust benchmark, containing multi-store, multi-item sales data that captures seasonal trends, event-driven demand variations, and price sensitivity. We introduce and evaluate an innovative hybrid methodology that combines a Genetic Algorithm with a Deep Q-Network (GA–DQN). The GA component conducts a broad, global search to optimize static inventory parameters such as reorder points and safety stock, while the DQN module learns adaptive, state-aware ordering strategies that can respond to dynamic, uncertain conditions. Our results show that this hybrid GA–DQN model achieves a significant improvement over a standalone DQN baseline—raising the service level from 61% to 94% and simultaneously lowering overall inventory costs. The framework we propose is modular and includes three key components: demand forecasting using Long Short-Term Memory (LSTM) networks to capture temporal sales patterns; GA-based optimization to fine-tune static policy parameters; and RL-driven adaptive control to support responsive, real-time ordering decisions. This integrated approach delivers a scalable, data-driven solution well-suited to the demands of modern retail supply chains, effectively addressing issues such as supplier unreliability, demand uncertainty, and the management of perishable goods.</div></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"12 ","pages":"Article 100154"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863525000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Effective management of inventory is essential for achieving high service levels, minimizing costs, and maintaining the overall resilience of retail supply chains—particularly in complex, real-world environments. Conventional strategies often prove inadequate because they rely on rigid assumptions or single-technique models that fail to accommodate practical challenges such as fluctuating demand, unpredictable lead times, and disruptions in supply.
To bridge this gap, our research undertakes a comprehensive comparison of multiple approaches — including Reinforcement Learning (RL), Genetic Algorithms (GA), Deep Learning (DL), Machine Learning (ML), and heuristic techniques — evaluated within a consistent and realistic testing framework based on the Walmart M5 dataset. This dataset offers a robust benchmark, containing multi-store, multi-item sales data that captures seasonal trends, event-driven demand variations, and price sensitivity. We introduce and evaluate an innovative hybrid methodology that combines a Genetic Algorithm with a Deep Q-Network (GA–DQN). The GA component conducts a broad, global search to optimize static inventory parameters such as reorder points and safety stock, while the DQN module learns adaptive, state-aware ordering strategies that can respond to dynamic, uncertain conditions. Our results show that this hybrid GA–DQN model achieves a significant improvement over a standalone DQN baseline—raising the service level from 61% to 94% and simultaneously lowering overall inventory costs. The framework we propose is modular and includes three key components: demand forecasting using Long Short-Term Memory (LSTM) networks to capture temporal sales patterns; GA-based optimization to fine-tune static policy parameters; and RL-driven adaptive control to support responsive, real-time ordering decisions. This integrated approach delivers a scalable, data-driven solution well-suited to the demands of modern retail supply chains, effectively addressing issues such as supplier unreliability, demand uncertainty, and the management of perishable goods.