On the spectrum of limit models

IF 0.6 2区 数学 Q2 LOGIC
Jeremy Beard , Marcos Mazari-Armida
{"title":"On the spectrum of limit models","authors":"Jeremy Beard ,&nbsp;Marcos Mazari-Armida","doi":"10.1016/j.apal.2025.103647","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectrum of limit models assuming the existence of a nicely behaved independence notion. Under reasonable assumptions, we show that all ‘long’ limit models are isomorphic, and all ‘short’ limit models are non-isomorphic. <section><p><strong>Theorem</strong></p><div><em>Let</em> <strong>K</strong> <em>be a</em> <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><em>-tame abstract elementary class stable in</em> <span><math><mi>λ</mi><mo>≥</mo><mi>LS</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> <em>with amalgamation, joint embedding and no maximal models. Let</em> <span><math><mi>κ</mi><mo>&lt;</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>be regular. Suppose</em> <figure><img></figure> <em>is an independence relation on the models of size λ that satisfies uniqueness, extension, non-forking amalgamation, universal continuity, and</em> <span><math><mo>(</mo><mo>≥</mo><mi>κ</mi><mo>)</mo></math></span><em>-local character.</em></div><div><em>Suppose</em> <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>with</em> <span><math><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>&lt;</mo><mi>cf</mi><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><em>. Then for any</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>M</mi><mo>∈</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> <em>where</em> <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> <em>is a</em> <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>)</mo></math></span><em>-limit model over M for</em> <span><math><mi>l</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span><em>,</em><span><span><img></span></span></div></section></div><div>Both implications in the conclusion have improvements. High cofinality limits are isomorphic without the <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-tameness assumption and assuming <figure><img></figure> is defined only on high cofinality limit models. Low cofinality limits are non-isomorphic without assuming non-forking amalgamation.</div><div>We show how our results can be used to study limit models in both abstract settings and in natural examples of abstract elementary classes.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 10","pages":"Article 103647"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722500096X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study the spectrum of limit models assuming the existence of a nicely behaved independence notion. Under reasonable assumptions, we show that all ‘long’ limit models are isomorphic, and all ‘short’ limit models are non-isomorphic.

Theorem

Let K be a 0-tame abstract elementary class stable in λLS(K) with amalgamation, joint embedding and no maximal models. Let κ<λ+ be regular. Suppose
is an independence relation on the models of size λ that satisfies uniqueness, extension, non-forking amalgamation, universal continuity, and (κ)-local character.
Suppose δ1,δ2<λ+ with cf(δ1)<cf(δ2). Then for any N1,N2,MKλ where Nl is a (λ,δl)-limit model over M for l=1,2,
Both implications in the conclusion have improvements. High cofinality limits are isomorphic without the 0-tameness assumption and assuming
is defined only on high cofinality limit models. Low cofinality limits are non-isomorphic without assuming non-forking amalgamation.
We show how our results can be used to study limit models in both abstract settings and in natural examples of abstract elementary classes.
在极限模型的谱上
我们研究了假设存在一个很好的独立性概念的极限模型的谱。在合理的假设下,我们证明了所有的“长”极限模型都是同构的,所有的“短”极限模型都是非同构的。定理设K是一个在λ≥LS(K)中稳定的、具有合并、联合嵌入和无极大模型的λ 0-驯服的抽象初等类。设κ<;λ+是正则的。假设大小为λ的模型上存在一个独立关系,该关系满足唯一性、可拓性、非分叉合并、普遍连续性和(≥κ)-局部特征。假设δ1 δ2<;λ+ cf(δ1)<cf(δ2)然后,对于任意N1,N2,M∈Kλ,其中当l=1,2时,Nl是M上的(λ,δl)极限模型。高共度极限是同构的,不需要假设,假设只在高共度极限模型上定义。低共通性限制是非同构的,不假设非分叉合并。我们展示了如何将我们的结果用于研究抽象设置和抽象初等类的自然示例中的极限模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信