Louise Olsen-Kettle, Sanjib Mondal, Hugo Walsh, Bradley Talbot, Osamah Obayes, Jessey Lee
{"title":"Analysis of new damage evolution models for early age concrete","authors":"Louise Olsen-Kettle, Sanjib Mondal, Hugo Walsh, Bradley Talbot, Osamah Obayes, Jessey Lee","doi":"10.1177/10567895251358294","DOIUrl":null,"url":null,"abstract":"Concrete cone (or breakout) failure mode is the dominant failure for cast-in headed anchors under tension in mature brittle concrete, however, other failure modes such as plug failure has been found experimentally to dominate in early age concrete. Design codes generally assume concrete cone failure and do not cover plug failure. A new model for concrete at early ages is proposed based on continuum damage mechanics which can model both failure modes for cast-in headed anchors in early age concrete. The new damage model combines a modified power law for the onset of damage, an exponential softening law for the post-failure softening stage, and an additional modified power law to reproduce the final stages of fracture. The combined damage law is calibrated with three experimental tests for concrete at two different ages (43 hours and 14 days): uniaxial compression, Brazilian splitting tensile and wedge splitting tests. The new models are applied to investigate anchor pull-out failure to demonstrate that both cone and plug failure modes are produced depending on concrete age. Simulations using the combined damage evolution laws gave the lowest average percent error over the mechanical properties measured in the four tests, when compared with existing damage evolution laws.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251358294","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete cone (or breakout) failure mode is the dominant failure for cast-in headed anchors under tension in mature brittle concrete, however, other failure modes such as plug failure has been found experimentally to dominate in early age concrete. Design codes generally assume concrete cone failure and do not cover plug failure. A new model for concrete at early ages is proposed based on continuum damage mechanics which can model both failure modes for cast-in headed anchors in early age concrete. The new damage model combines a modified power law for the onset of damage, an exponential softening law for the post-failure softening stage, and an additional modified power law to reproduce the final stages of fracture. The combined damage law is calibrated with three experimental tests for concrete at two different ages (43 hours and 14 days): uniaxial compression, Brazilian splitting tensile and wedge splitting tests. The new models are applied to investigate anchor pull-out failure to demonstrate that both cone and plug failure modes are produced depending on concrete age. Simulations using the combined damage evolution laws gave the lowest average percent error over the mechanical properties measured in the four tests, when compared with existing damage evolution laws.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).