Iron and zinc isotopes constrain the continental crust formation

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Jianfeng Ma , Hamed Gamaleldien , Sheng-Ao Liu , Yuan-Ru Qu
{"title":"Iron and zinc isotopes constrain the continental crust formation","authors":"Jianfeng Ma ,&nbsp;Hamed Gamaleldien ,&nbsp;Sheng-Ao Liu ,&nbsp;Yuan-Ru Qu","doi":"10.1016/j.gca.2025.08.024","DOIUrl":null,"url":null,"abstract":"<div><div>The origin of Earth’s earliest felsic melts from mafic crust is still controversial. Their formation likely involved hydrothermal alteration of mafic protoliths followed by partial melting. However, the specific mechanisms and conditions of anatexis remain unclear. Investigating modern analogues like plagiogranites may offer key insights into the formation and evolution of the Earth’s early juvenile continental crust. Stable isotopes of iron (Fe) and zinc (Zn) are sensitive to chemical dynamic conditions and do not evolve with time, making them highly promising tracers for deciphering the origin of plagiogranites. Here, we present high-precision Fe-Zn isotope analysis and thermodynamic modeling to explore the formation of the El-Shadli plagiogranite complex in the Arabian-Nubian Shield as an example. These plagiogranite rocks have low Sr/Y (0.4–5.3) characteristics and exhibit a range of Fe-Zn isotopic compositions, with δ<sup>56</sup>Fe values of 0.06 ± 0.04 ‰ to 0.19 ± 0.02 ‰ (2SD) and δ<sup>66</sup>Zn values of 0.27 ± 0.03 ‰ to 0.41 ± 0.04 ‰ (2SD). Thermodynamic modeling indicates that H<sub>2</sub>O-saturated melting of altered oceanic crust (AOC) at shallow crustal depths (2–6 kbar) and elevated temperatures (700–900 °C) with geothermal gradients of 1200–4500 °C/GPa under a mantle plume setting was the primary mechanism driving plagiogranite formation. Sub-mantle oxygen isotopes in zircon (δ<sup>18</sup>O from 4.06 ± 0.17 ‰ to 5.09 ± 0.20 ‰) indicate that the required fluid originated from seawater and regulates the partial melting of plagioclase and amphibole during anatexis, directly influencing Fe-Zn isotope fractionation between the resulting plagiogranite melts and their residual source. Notably, the 4.02 billion years (Ga) Idiwhaa gneisses share similar Fe isotope and trace element compositions with the El-Shadli plagiogranites, suggesting that the Earth’s earliest felsic continental crust may have formed through a comparable process. Thermodynamic modeling also indicates that the Idiwhaa gneisses originated from partial melting of an AOC-like protolith under a high thermal gradient of 1270–4100 °C/GPa, possibly in the context of a mantle plume or meteorite impact. Our findings underscore the effectiveness of Fe and Zn isotopes in tracing the genesis of felsic magmas and emphasize their promise in probing the evolution of the Early Earth’s continental crust.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"407 ","pages":"Pages 1-11"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004314","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of Earth’s earliest felsic melts from mafic crust is still controversial. Their formation likely involved hydrothermal alteration of mafic protoliths followed by partial melting. However, the specific mechanisms and conditions of anatexis remain unclear. Investigating modern analogues like plagiogranites may offer key insights into the formation and evolution of the Earth’s early juvenile continental crust. Stable isotopes of iron (Fe) and zinc (Zn) are sensitive to chemical dynamic conditions and do not evolve with time, making them highly promising tracers for deciphering the origin of plagiogranites. Here, we present high-precision Fe-Zn isotope analysis and thermodynamic modeling to explore the formation of the El-Shadli plagiogranite complex in the Arabian-Nubian Shield as an example. These plagiogranite rocks have low Sr/Y (0.4–5.3) characteristics and exhibit a range of Fe-Zn isotopic compositions, with δ56Fe values of 0.06 ± 0.04 ‰ to 0.19 ± 0.02 ‰ (2SD) and δ66Zn values of 0.27 ± 0.03 ‰ to 0.41 ± 0.04 ‰ (2SD). Thermodynamic modeling indicates that H2O-saturated melting of altered oceanic crust (AOC) at shallow crustal depths (2–6 kbar) and elevated temperatures (700–900 °C) with geothermal gradients of 1200–4500 °C/GPa under a mantle plume setting was the primary mechanism driving plagiogranite formation. Sub-mantle oxygen isotopes in zircon (δ18O from 4.06 ± 0.17 ‰ to 5.09 ± 0.20 ‰) indicate that the required fluid originated from seawater and regulates the partial melting of plagioclase and amphibole during anatexis, directly influencing Fe-Zn isotope fractionation between the resulting plagiogranite melts and their residual source. Notably, the 4.02 billion years (Ga) Idiwhaa gneisses share similar Fe isotope and trace element compositions with the El-Shadli plagiogranites, suggesting that the Earth’s earliest felsic continental crust may have formed through a comparable process. Thermodynamic modeling also indicates that the Idiwhaa gneisses originated from partial melting of an AOC-like protolith under a high thermal gradient of 1270–4100 °C/GPa, possibly in the context of a mantle plume or meteorite impact. Our findings underscore the effectiveness of Fe and Zn isotopes in tracing the genesis of felsic magmas and emphasize their promise in probing the evolution of the Early Earth’s continental crust.
铁和锌同位素限制了大陆地壳的形成
地球上最早的长硅熔体来自地壳的起源仍然存在争议。它们的形成可能涉及基性原岩的热液蚀变和部分熔融。然而,其具体机制和条件尚不清楚。研究斜长花岗岩这样的现代类似物,可能为了解地球早期幼年大陆地壳的形成和演化提供关键的见解。铁(Fe)和锌(Zn)的稳定同位素对化学动态条件敏感,不随时间变化而变化,这使它们成为破译斜长花岗岩起源的极有希望的示踪剂。本文以阿拉伯-努比亚地盾El-Shadli斜长花岗岩杂岩的形成为例,进行了高精度的Fe-Zn同位素分析和热力学建模。这些岩石plagiogranite Sr / Y较低(0.4 - -5.3)特点和表现出一系列的Fe-Zn同位素组成,用δ56 fe值0.06 ±0.04  ‰至0.19 ±0.02  ‰(2 sd)和δ66锌值0.27 ±0.03  ‰至0.41 ±0.04  ‰(2 sd)。热力模拟表明,地幔柱背景下浅层(2-6 kbar)蚀变洋壳(AOC)饱和熔融和温度升高(700-900 °C)(地温梯度1200-4500 °C/GPa)是斜花岗岩形成的主要机制。锆石地幔下氧同位素(δ18O为4.06 ± 0.17 ‰~ 5.09 ± 0.20 ‰)表明,所需流体来源于海水,并调节了斜长石和角闪孔在深熔过程中的部分熔融,直接影响了斜长石熔体及其残留源之间的Fe-Zn同位素分馏。值得注意的是,40.2亿年(Ga)的Idiwhaa片麻岩与El-Shadli斜长花岗岩具有相似的铁同位素和微量元素组成,这表明地球最早的长英质大陆地壳可能是通过类似的过程形成的。热力学模型还表明,Idiwhaa片麻岩起源于类似aoc的原岩在1270 ~ 4100 °C/GPa的高热梯度下的部分熔融,可能是地幔柱或陨石撞击的产物。我们的发现强调了铁和锌同位素在追踪长英质岩浆成因方面的有效性,并强调了它们在探索早期地球大陆地壳演化方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信