An experimental investigation of the redox reactions between carbonates and pyrrhotite at high P-T conditions: insights into diamond formation in deep subduction zones

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Jintao Zhu , Renbiao Tao , Wenqing Sun , Takayuki Ishii , Yunxiu Li , Huijuan Li , Vincenzo Stagno , Lifei Zhang
{"title":"An experimental investigation of the redox reactions between carbonates and pyrrhotite at high P-T conditions: insights into diamond formation in deep subduction zones","authors":"Jintao Zhu ,&nbsp;Renbiao Tao ,&nbsp;Wenqing Sun ,&nbsp;Takayuki Ishii ,&nbsp;Yunxiu Li ,&nbsp;Huijuan Li ,&nbsp;Vincenzo Stagno ,&nbsp;Lifei Zhang","doi":"10.1016/j.gca.2025.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Subducted carbonates can be reduced into graphite/diamond through redox reactions involving metallic alloys (e.g., Fe<sup>0</sup>) or silicate minerals (e.g., Fe<sup>2+</sup>-bearing minerals) in the deep mantle. Pyrrhotite (FeS), an essential carrier of reduced sulfur (S<sup>2−</sup>), is commonly found as inclusions in natural diamond, mantle-derived xenoliths, and subducted slabs alongside various carbonates. Although carbonate/diamond and pyrrhotite show strong associations, the interplay of carbon and sulfur and the sulfide-induced formation mechanism of diamonds in deep subduction zones remain poorly constrained. In this study, we conducted a series of experiments to investigate possible redox reactions between aragonite/magnesite (CaCO<sub>3</sub>/MgCO<sub>3</sub>) and pyrrhotite (FeS) with or without SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> added to the bulk compositions under pressure and temperature conditions of 4–10 GPa and 800–1600 °C. Based on high-pressure experimental results combined with thermodynamic modelling, we found that the transformation of pyrrhotite to pyrite (FeS<sub>2</sub>) under high-pressure and low-temperature conditions can simultaneously reduce carbonates to graphitic carbon (C). High contents of SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> in the bulk compositions could promote the formation of pyrite + graphite + Fe<sup>2+</sup>-rich silicates (e.g., hedenbergite and almandine). Therefore, we propose that the subduction of oceanic slabs, including sialic sediments and carbonated eclogites (e.g., those enriched in carbonate, quartz, feldspar, and mica minerals), along a relatively cold geotherm into the deep mantle can drive efficient redox reactions between carbonates and sulfides, potentially contributing to the formation of diamonds in the deep mantle.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"407 ","pages":"Pages 265-281"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004181","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Subducted carbonates can be reduced into graphite/diamond through redox reactions involving metallic alloys (e.g., Fe0) or silicate minerals (e.g., Fe2+-bearing minerals) in the deep mantle. Pyrrhotite (FeS), an essential carrier of reduced sulfur (S2−), is commonly found as inclusions in natural diamond, mantle-derived xenoliths, and subducted slabs alongside various carbonates. Although carbonate/diamond and pyrrhotite show strong associations, the interplay of carbon and sulfur and the sulfide-induced formation mechanism of diamonds in deep subduction zones remain poorly constrained. In this study, we conducted a series of experiments to investigate possible redox reactions between aragonite/magnesite (CaCO3/MgCO3) and pyrrhotite (FeS) with or without SiO2 and Al2O3 added to the bulk compositions under pressure and temperature conditions of 4–10 GPa and 800–1600 °C. Based on high-pressure experimental results combined with thermodynamic modelling, we found that the transformation of pyrrhotite to pyrite (FeS2) under high-pressure and low-temperature conditions can simultaneously reduce carbonates to graphitic carbon (C). High contents of SiO2 and Al2O3 in the bulk compositions could promote the formation of pyrite + graphite + Fe2+-rich silicates (e.g., hedenbergite and almandine). Therefore, we propose that the subduction of oceanic slabs, including sialic sediments and carbonated eclogites (e.g., those enriched in carbonate, quartz, feldspar, and mica minerals), along a relatively cold geotherm into the deep mantle can drive efficient redox reactions between carbonates and sulfides, potentially contributing to the formation of diamonds in the deep mantle.
高P-T条件下碳酸盐和磁黄铁矿氧化还原反应的实验研究:对深俯冲带金刚石形成的见解
俯冲碳酸盐可以通过与深部地幔中的金属合金(如Fe0)或硅酸盐矿物(如含Fe2+−矿物)的氧化还原反应还原为石墨/金刚石。磁黄铁矿(FeS)是还原硫(S2−)的重要载体,通常作为包裹体存在于天然金刚石、地幔源捕虏体和俯冲板中,并与各种碳酸盐一起存在。虽然碳酸盐/金刚石与磁黄铁矿表现出较强的相关性,但对深俯冲带碳硫相互作用和硫化物诱导的金刚石形成机制仍知之甚少。在这项研究中,我们进行了一系列实验,研究了在4-10 GPa和800-1600 °C的压力和温度条件下,在体积成分中添加或不添加SiO2和Al2O3的文石/菱镁矿(CaCO3/MgCO3)和磁黄铁矿(FeS)之间可能发生的氧化还原反应。基于高压实验结果结合热力学模型,我们发现在高压和低温条件下磁黄铁矿向黄铁矿(FeS2)的转化可以同时将碳酸盐还原为石墨碳(C)。体积成分中SiO2和Al2O3的高含量有利于黄铁矿 + 石墨 + 富Fe2+硅酸盐(如hedenbergite和almandine)的形成。因此,我们认为,海洋板块(包括硅质沉积物和碳酸榴辉岩(如富含碳酸盐、石英、长石和云母矿物))沿相对较冷的地热向深部地幔俯冲,可以驱动碳酸盐和硫化物之间的有效氧化还原反应,可能有助于深部地幔中钻石的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信