Alexander Biederstädt, Rafet Basar, Jeong-Min Park, Nadima Uprety, Rejeena Shrestha, Francia Reyes Silva, Merve Dede, John Watts, Sunil Acharya, Donghai Xiong, Bin Liu, May Daher, Hind Rafei, Pinaki Banerjee, Ping Li, Sanjida Islam, Huihui Fan, Mayra Shanley, Jingling Jin, Bijender Kumar, Vernikka Woods, Paul Lin, Silvia Tiberti, Ana Karen Nunez Cortes, Xin Ru Jiang, Inci Biederstädt, Patrick Zhang, Ye Li, Seema Rawal, Enli Liu, Luis Muniz-Feliciano, Gary M. Deyter, Elizabeth J. Shpall, Natalie Wall Fowlkes, Ken Chen, Katayoun Rezvani
{"title":"Genome-wide CRISPR screens identify critical targets to enhance CAR-NK cell antitumor potency","authors":"Alexander Biederstädt, Rafet Basar, Jeong-Min Park, Nadima Uprety, Rejeena Shrestha, Francia Reyes Silva, Merve Dede, John Watts, Sunil Acharya, Donghai Xiong, Bin Liu, May Daher, Hind Rafei, Pinaki Banerjee, Ping Li, Sanjida Islam, Huihui Fan, Mayra Shanley, Jingling Jin, Bijender Kumar, Vernikka Woods, Paul Lin, Silvia Tiberti, Ana Karen Nunez Cortes, Xin Ru Jiang, Inci Biederstädt, Patrick Zhang, Ye Li, Seema Rawal, Enli Liu, Luis Muniz-Feliciano, Gary M. Deyter, Elizabeth J. Shpall, Natalie Wall Fowlkes, Ken Chen, Katayoun Rezvani","doi":"10.1016/j.ccell.2025.07.021","DOIUrl":null,"url":null,"abstract":"Adoptive cell therapy using engineered natural killer (NK) cells is a promising approach for cancer treatment, with targeted gene editing offering the potential to further enhance their therapeutic efficacy. However, the spectrum of actionable genetic targets to overcome tumor and microenvironment-mediated immunosuppression remains largely unexplored. We performed multiple genome-wide CRISPR screens in primary human NK cells and identified critical checkpoints regulating resistance to immunosuppressive pressures. Ablation of <ce:italic>MED12</ce:italic>, <ce:italic>ARIH2</ce:italic>, and <ce:italic>CCNC</ce:italic> significantly improved NK cell antitumor activity against multiple treatment-refractory human cancers <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic>. CRISPR editing augmented both innate and CAR-mediated NK cell function, associated with enhanced metabolic fitness, increased secretion of proinflammatory cytokines, and expansion of cytotoxic NK cell subsets. Through high-content genome-wide CRISPR screening in NK cells, this study reveals critical regulators of NK cell function and provides a valuable resource for engineering next-generation NK cell therapies with improved efficacy against cancer.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"22 1","pages":""},"PeriodicalIF":44.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.07.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adoptive cell therapy using engineered natural killer (NK) cells is a promising approach for cancer treatment, with targeted gene editing offering the potential to further enhance their therapeutic efficacy. However, the spectrum of actionable genetic targets to overcome tumor and microenvironment-mediated immunosuppression remains largely unexplored. We performed multiple genome-wide CRISPR screens in primary human NK cells and identified critical checkpoints regulating resistance to immunosuppressive pressures. Ablation of MED12, ARIH2, and CCNC significantly improved NK cell antitumor activity against multiple treatment-refractory human cancers in vitro and in vivo. CRISPR editing augmented both innate and CAR-mediated NK cell function, associated with enhanced metabolic fitness, increased secretion of proinflammatory cytokines, and expansion of cytotoxic NK cell subsets. Through high-content genome-wide CRISPR screening in NK cells, this study reveals critical regulators of NK cell function and provides a valuable resource for engineering next-generation NK cell therapies with improved efficacy against cancer.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.