A Systematic Literature Review on Explainability for ML/DL-based Software Engineering

IF 28 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Sicong Cao, Xiaobing Sun, Ratnadira Widyasari, David Lo, Xiaoxue Wu, Lili Bo, Jiale Zhang, Bin Li, Wei Liu, Di Wu, Yixin Chen
{"title":"A Systematic Literature Review on Explainability for ML/DL-based Software Engineering","authors":"Sicong Cao, Xiaobing Sun, Ratnadira Widyasari, David Lo, Xiaoxue Wu, Lili Bo, Jiale Zhang, Bin Li, Wei Liu, Di Wu, Yixin Chen","doi":"10.1145/3763230","DOIUrl":null,"url":null,"abstract":"The remarkable achievements of Artificial Intelligence (AI) algorithms, particularly in Machine Learning (ML) and Deep Learning (DL), have fueled their extensive deployment across multiple sectors, including Software Engineering (SE). However, due to their black-box nature, these promising AI-driven SE models are still far from being deployed in practice. This lack of explainability poses unwanted risks for their applications in critical tasks, such as vulnerability detection, where decision-making transparency is of paramount importance. This paper endeavors to elucidate this interdisciplinary domain by presenting a systematic literature review of approaches that aim to improve the explainability of AI models within the context of SE. The review canvasses work appearing in the most prominent SE & AI conferences and journals, and spans 108 papers across 23 unique SE tasks. Based on three key Research Questions (RQs), we aim to (1) summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches. Based on our findings, we identified a set of challenges remaining to be addressed in existing studies, together with a set of guidelines highlighting potential opportunities we deemed appropriate and important for future work.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"23 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3763230","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable achievements of Artificial Intelligence (AI) algorithms, particularly in Machine Learning (ML) and Deep Learning (DL), have fueled their extensive deployment across multiple sectors, including Software Engineering (SE). However, due to their black-box nature, these promising AI-driven SE models are still far from being deployed in practice. This lack of explainability poses unwanted risks for their applications in critical tasks, such as vulnerability detection, where decision-making transparency is of paramount importance. This paper endeavors to elucidate this interdisciplinary domain by presenting a systematic literature review of approaches that aim to improve the explainability of AI models within the context of SE. The review canvasses work appearing in the most prominent SE & AI conferences and journals, and spans 108 papers across 23 unique SE tasks. Based on three key Research Questions (RQs), we aim to (1) summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches. Based on our findings, we identified a set of challenges remaining to be addressed in existing studies, together with a set of guidelines highlighting potential opportunities we deemed appropriate and important for future work.
基于ML/ dl的软件工程可解释性的系统文献综述
人工智能(AI)算法的显著成就,特别是在机器学习(ML)和深度学习(DL)方面,推动了它们在多个领域的广泛部署,包括软件工程(SE)。然而,由于它们的黑箱性质,这些有前途的人工智能驱动的SE模型仍远未在实践中部署。这种可解释性的缺乏为它们在关键任务中的应用带来了不必要的风险,例如漏洞检测,其中决策透明度至关重要。本文通过对旨在提高人工智能模型在SE背景下的可解释性的方法进行系统的文献综述,努力阐明这一跨学科领域。该综述调查了出现在最著名的SE &; AI会议和期刊上的工作,涵盖了23个独特SE任务的108篇论文。基于三个关键研究问题(RQs),我们的目标是:(1)总结迄今为止XAI技术已显示成功的SE任务;(2)对不同的XAI技术进行分类和分析;(3)研究现有的评价方法。根据我们的研究结果,我们确定了现有研究中有待解决的一系列挑战,以及一套我们认为对未来工作适当和重要的潜在机会的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信