{"title":"High fructose consumption aggravates inflammation by promoting effector T cell generation via inducing metabolic reprogramming","authors":"Xiao Ma, Jiao Chen, Fang Wang, Xinzou Fan, Zhenhong Li, Hantian Liang, Hao Cheng, Fang Nan, Yubin Lin, Xiaoshuang Song, Jianan Zhang, Fan Gao, Wei Zhang, Wenwen Jin, Huiyuan Zhang, Jiyu Tong, Hong Jiang, Xikun Zhou, Qiang Zou, Hongbo Hu, Aiping Tong, WanJun Chen, Dunfang Zhang","doi":"10.1038/s41392-025-02359-9","DOIUrl":null,"url":null,"abstract":"<p>The intake of sugars, especially glucose and fructose, has significantly increased with the change of lifestyle. Excessive intake of sugar has been proven to be associated with tumors and inflammatory diseases. Fructose directly mediates innate immune responses; however, whether it can directly regulate T-cell immunity remains unknown. We show that high fructose consumption accelerates the development of inflammatory bowel disease (IBD) by promoting the generation of T helper 1 (Th1) and T helper 17 (Th17) cells. It was demonstrated that fructose promotes the differentiation of Th1 and Th17 cells directly by enhancing mechanistic target of rapamycin complex 1 (mTORC1) activation through the glutamine metabolism-dependent pathway. Reactive oxygen species (ROS)-induced activation of transforming growth factor-β (TGF-β) is also involved in fructose-induced Th17 cell generation. Moreover, metformin can reverse Th1 and Th17 cell generation induced by fructose by suppressing mTORC1 activation and reducing ROS-mediated TGF-β activation. Finally, we identified metformin as an in vivo therapeutic drug for relieving high fructose consumption-induced T-cell inflammation and colitis aggravation. Our study revealed a previously unknown adverse effect of high fructose consumption in disrupting immune homeostasis and exacerbating IBD by directly promoting T-cell immunity, and showed metformin is a potential therapeutic for reversing the T cell immune imbalance caused by long-term high fructose consumption.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"15 1","pages":""},"PeriodicalIF":52.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02359-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intake of sugars, especially glucose and fructose, has significantly increased with the change of lifestyle. Excessive intake of sugar has been proven to be associated with tumors and inflammatory diseases. Fructose directly mediates innate immune responses; however, whether it can directly regulate T-cell immunity remains unknown. We show that high fructose consumption accelerates the development of inflammatory bowel disease (IBD) by promoting the generation of T helper 1 (Th1) and T helper 17 (Th17) cells. It was demonstrated that fructose promotes the differentiation of Th1 and Th17 cells directly by enhancing mechanistic target of rapamycin complex 1 (mTORC1) activation through the glutamine metabolism-dependent pathway. Reactive oxygen species (ROS)-induced activation of transforming growth factor-β (TGF-β) is also involved in fructose-induced Th17 cell generation. Moreover, metformin can reverse Th1 and Th17 cell generation induced by fructose by suppressing mTORC1 activation and reducing ROS-mediated TGF-β activation. Finally, we identified metformin as an in vivo therapeutic drug for relieving high fructose consumption-induced T-cell inflammation and colitis aggravation. Our study revealed a previously unknown adverse effect of high fructose consumption in disrupting immune homeostasis and exacerbating IBD by directly promoting T-cell immunity, and showed metformin is a potential therapeutic for reversing the T cell immune imbalance caused by long-term high fructose consumption.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.