{"title":"Fibroblast Modulation of Stem Cell Lineage Infidelity and Metaplasia in Tissue Fibrosis","authors":"Tsukasa Kadota, Tien Peng","doi":"10.1146/annurev-pathmechdis-042624-111827","DOIUrl":null,"url":null,"abstract":"Epithelial stem cells are segregated on the basis of region-specific identities during homeostasis. However, tissue perturbations can induce remarkable plasticity in stem cells to adopt lineage identities outside their anatomical compartments. This phenomenon has been termed lineage infidelity or metaplasia depending on the tissue, and the stem cell trajectory can determine regenerative outcomes relevant to many diseases, including fibrosis. While many studies have shed light on stem-cell intrinsic mechanisms that govern their ability to switch identities, much less is known about microenvironmental factors that alert stem cells and modify their lineage decisions. Fibroblasts are structural cells that provide the necessary scaffolding for stem cells in their native niche, but fibroblasts also sense external changes to the tissue environment to drive the tissue response. In this review, we explore the role of fibroblasts as a critical orchestrator of lineage plasticity that blurs compartmental identities to initiate proper repair or disease.","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":"19 1","pages":""},"PeriodicalIF":34.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Pathology-Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pathmechdis-042624-111827","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial stem cells are segregated on the basis of region-specific identities during homeostasis. However, tissue perturbations can induce remarkable plasticity in stem cells to adopt lineage identities outside their anatomical compartments. This phenomenon has been termed lineage infidelity or metaplasia depending on the tissue, and the stem cell trajectory can determine regenerative outcomes relevant to many diseases, including fibrosis. While many studies have shed light on stem-cell intrinsic mechanisms that govern their ability to switch identities, much less is known about microenvironmental factors that alert stem cells and modify their lineage decisions. Fibroblasts are structural cells that provide the necessary scaffolding for stem cells in their native niche, but fibroblasts also sense external changes to the tissue environment to drive the tissue response. In this review, we explore the role of fibroblasts as a critical orchestrator of lineage plasticity that blurs compartmental identities to initiate proper repair or disease.
期刊介绍:
The Annual Review of Pathology: Mechanisms of Disease is a scholarly journal that has been published since 2006. Its primary focus is to provide a comprehensive overview of recent advancements in our knowledge of the causes and development of significant human diseases. The journal places particular emphasis on exploring the current and evolving concepts of disease pathogenesis, as well as the molecular genetic and morphological changes associated with various diseases. Additionally, the journal addresses the clinical significance of these findings.
In order to increase accessibility and promote the broad dissemination of research, the current volume of the journal has transitioned from a gated subscription model to an open access format. This change has been made possible through the Annual Reviews' Subscribe to Open program, which allows all articles published in this volume to be freely accessible to readers. As part of this transition, all articles in the journal are published under a Creative Commons Attribution (CC BY) license, which encourages open sharing and use of the research.