Nikol Chantzi, Akshatha Nayak, Fotis A. Baltoumas, Eleni Aplakidou, Shiau Wei Liew, Jesslyn Elvaretta Galuh, Michail Patsakis, Austin Montgomery, Camille Moeckel, Ioannis Mouratidis, Saiful Arefeen Sazed, Wilfried Guiblet, Panagiotis Karmiris-Obratański, Guliang Wang, Apostolos Zaravinos, Karen M. Vasquez, Chun Kit Kwok, Georgios A. Pavlopoulos, Ilias Georgakopoulos-Soares
{"title":"Quadrupia provides a comprehensive catalog of G-quadruplexes across genomes from the tree of life","authors":"Nikol Chantzi, Akshatha Nayak, Fotis A. Baltoumas, Eleni Aplakidou, Shiau Wei Liew, Jesslyn Elvaretta Galuh, Michail Patsakis, Austin Montgomery, Camille Moeckel, Ioannis Mouratidis, Saiful Arefeen Sazed, Wilfried Guiblet, Panagiotis Karmiris-Obratański, Guliang Wang, Apostolos Zaravinos, Karen M. Vasquez, Chun Kit Kwok, Georgios A. Pavlopoulos, Ilias Georgakopoulos-Soares","doi":"10.1101/gr.279790.124","DOIUrl":null,"url":null,"abstract":"G-quadruplex DNA structures exhibit a profound influence on essential biological processes, including transcription, replication, telomere maintenance, and genomic stability. These structures have demonstrably shaped organismal evolution. However, a comprehensive, organism-wide G-quadruplex map encompassing the diversity of life has remained elusive. Here, we introduce Quadrupia, the most extensive and well-characterized G-quadruplex database to date, facilitating the exploration of G-quadruplex structures across the evolutionary spectrum. Quadrupia has identified G-quadruplex sequences in 108,449 reference genomes, with a total of 140,181,277 G-quadruplexes. The database also hosts a collection of 319,784 G-quadruplex clusters of 20 or more members, annotated by taxonomic distributions, multiple sequence alignments, profile hidden Markov models and cross-references to G-quadruplex 3D structures. Examination of G-quadruplexes across functional genomic elements in different taxa indicates preferential orientation and positioning, with significant differences between individual taxonomic groups. For example, we find that G-quadruplexes in bacteria with a single replication origin display profound preference for the leading orientation. Finally, we experimentally validate the most frequently observed G-quadruplexes using CD-spectroscopy, UV melting, and fluorescent-based approaches.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"191 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279790.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
G-quadruplex DNA structures exhibit a profound influence on essential biological processes, including transcription, replication, telomere maintenance, and genomic stability. These structures have demonstrably shaped organismal evolution. However, a comprehensive, organism-wide G-quadruplex map encompassing the diversity of life has remained elusive. Here, we introduce Quadrupia, the most extensive and well-characterized G-quadruplex database to date, facilitating the exploration of G-quadruplex structures across the evolutionary spectrum. Quadrupia has identified G-quadruplex sequences in 108,449 reference genomes, with a total of 140,181,277 G-quadruplexes. The database also hosts a collection of 319,784 G-quadruplex clusters of 20 or more members, annotated by taxonomic distributions, multiple sequence alignments, profile hidden Markov models and cross-references to G-quadruplex 3D structures. Examination of G-quadruplexes across functional genomic elements in different taxa indicates preferential orientation and positioning, with significant differences between individual taxonomic groups. For example, we find that G-quadruplexes in bacteria with a single replication origin display profound preference for the leading orientation. Finally, we experimentally validate the most frequently observed G-quadruplexes using CD-spectroscopy, UV melting, and fluorescent-based approaches.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.