Quantum spin liquid phases in Kitaev materials

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Po-Hao Chou, Chung-Yu Mou, Chung-Hou Chung, Sungkit Yip
{"title":"Quantum spin liquid phases in Kitaev materials","authors":"Po-Hao Chou, Chung-Yu Mou, Chung-Hou Chung, Sungkit Yip","doi":"10.1038/s41535-025-00811-1","DOIUrl":null,"url":null,"abstract":"<p>We develop a gauge-invariant renormalized mean-field theory (RMFT) to reliably find the quantum spin liquid (QSL) states and their field response for realistic Kitaev materials under strong magnetic fields and described by the generalized Kitaev <i>J</i>-<i>K</i>-Γ-<span>\\({\\Gamma }^{{\\prime} }\\)</span> model. Remarkably, while our RMFT reproduces previous results based on using more complicated numerical methods, it also predicts several new stable QSL states. In particular, since Kitaev spin liquid (KSL) is no longer a saddle point solution, a new exotic 2-cone state distinct from the KSL is found to describe experimental observations well, and hence should be the candidate state realized in the Kitaev material, <i>α</i>-RuCl<sub>3</sub>. We further explore the mechanism for the suppression of the observed thermal Hall conductivity at low temperatures within the fermionic framework, and show that the polar-angle dependence of the fermionic gap can distinguish the found 2-cone state from the KSL state in further experiments.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"19 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00811-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a gauge-invariant renormalized mean-field theory (RMFT) to reliably find the quantum spin liquid (QSL) states and their field response for realistic Kitaev materials under strong magnetic fields and described by the generalized Kitaev J-K-Γ-\({\Gamma }^{{\prime} }\) model. Remarkably, while our RMFT reproduces previous results based on using more complicated numerical methods, it also predicts several new stable QSL states. In particular, since Kitaev spin liquid (KSL) is no longer a saddle point solution, a new exotic 2-cone state distinct from the KSL is found to describe experimental observations well, and hence should be the candidate state realized in the Kitaev material, α-RuCl3. We further explore the mechanism for the suppression of the observed thermal Hall conductivity at low temperatures within the fermionic framework, and show that the polar-angle dependence of the fermionic gap can distinguish the found 2-cone state from the KSL state in further experiments.

Abstract Image

基塔耶夫材料中的量子自旋液相
我们建立了一种标准不变重整化平均场理论(RMFT),以可靠地找到现实基塔耶夫材料在强磁场下的量子自旋液体(QSL)态及其场响应,并由广义基塔耶夫J-K-Γ- \({\Gamma }^{{\prime} }\)模型描述。值得注意的是,虽然我们的RMFT基于更复杂的数值方法再现了以前的结果,但它也预测了几个新的稳定的QSL状态。特别是,由于Kitaev自旋液体(KSL)不再是鞍点解,因此发现了一种不同于KSL的新的奇异2锥态可以很好地描述实验观测结果,因此应该是Kitaev材料中实现的候选态α-RuCl3。我们进一步探索了在费米子框架内抑制低温下观察到的热霍尔电导率的机制,并表明费米子间隙的极角依赖性可以在进一步的实验中区分所发现的2锥态和KSL态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信