Large Model-Driven Real-Time Object Detection in High-Definition Video Surveillance Over Wireless Networks

IF 0.5 Q4 TELECOMMUNICATIONS
Haihong Guo, Dingding Zhang, Yang Wang, Junfang Tian
{"title":"Large Model-Driven Real-Time Object Detection in High-Definition Video Surveillance Over Wireless Networks","authors":"Haihong Guo,&nbsp;Dingding Zhang,&nbsp;Yang Wang,&nbsp;Junfang Tian","doi":"10.1002/itl2.70121","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes LMDOF-SIOGAN, a novel large model-driven object detection framework that integrates a Swarm Intelligence-Optimized Generative Adversarial Network (SIOGAN) with an adaptive large model detection pipeline. The proposed framework introduces two key modules: (1) a VE-GAN-based visual enhancement module (VE-GAN), which leverages adversarial learning and perceptual supervision to restore semantic integrity from degraded video frames; and (2) a Swarm Intelligence-Aided Scheduler (SIAS), which dynamically optimizes the detection pipeline based on real-time network conditions and video quality assessments. Extensive experiments were conducted on public datasets VisDrone2021 and UAVDT, under simulated wireless video surveillance environments with multi-resolution streams and comprehensive network impairments. The results demonstrate that LMDOF-SIOGAN consistently outperforms state-of-the-art baselines including YOLOv8 and ApproxDet, achieving up to 80.3% [email protected] at 4 K resolution with 125 ms end-to-end latency, while maintaining superior robustness index (RI) and moderate computational overhead. Ablation studies further validate the critical contributions of the VE-GAN and SIAS modules to detection accuracy, robustness, and latency.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes LMDOF-SIOGAN, a novel large model-driven object detection framework that integrates a Swarm Intelligence-Optimized Generative Adversarial Network (SIOGAN) with an adaptive large model detection pipeline. The proposed framework introduces two key modules: (1) a VE-GAN-based visual enhancement module (VE-GAN), which leverages adversarial learning and perceptual supervision to restore semantic integrity from degraded video frames; and (2) a Swarm Intelligence-Aided Scheduler (SIAS), which dynamically optimizes the detection pipeline based on real-time network conditions and video quality assessments. Extensive experiments were conducted on public datasets VisDrone2021 and UAVDT, under simulated wireless video surveillance environments with multi-resolution streams and comprehensive network impairments. The results demonstrate that LMDOF-SIOGAN consistently outperforms state-of-the-art baselines including YOLOv8 and ApproxDet, achieving up to 80.3% [email protected] at 4 K resolution with 125 ms end-to-end latency, while maintaining superior robustness index (RI) and moderate computational overhead. Ablation studies further validate the critical contributions of the VE-GAN and SIAS modules to detection accuracy, robustness, and latency.

无线网络高清视频监控中的大模型驱动实时目标检测
本文提出了一种新型的大型模型驱动目标检测框架LMDOF-SIOGAN,该框架将群体智能优化生成对抗网络(SIOGAN)与自适应大型模型检测管道相结合。该框架引入了两个关键模块:(1)基于VE-GAN的视觉增强模块(VE-GAN),该模块利用对抗性学习和感知监督从降级的视频帧中恢复语义完整性;(2)基于实时网络条件和视频质量评估动态优化检测管道的群智能辅助调度(SIAS)。在公共数据集VisDrone2021和UAVDT上,在具有多分辨率流和综合网络缺陷的模拟无线视频监控环境下进行了大量实验。结果表明,LMDOF-SIOGAN始终优于最先进的基线,包括YOLOv8和ApproxDet,在4k分辨率下,端到端延迟为125 ms,达到80.3% [email protected],同时保持优越的鲁棒性指数(RI)和适度的计算开销。消融研究进一步验证了VE-GAN和SIAS模块对检测精度、鲁棒性和延迟的重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信