Noise-resilient controlled quantum teleportation using quantum error correction

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Wen-Yang Wang, Chao-Wei Ding, Lan Zhou, Wei Zhong, Yu-Bo Sheng
{"title":"Noise-resilient controlled quantum teleportation using quantum error correction","authors":"Wen-Yang Wang,&nbsp;Chao-Wei Ding,&nbsp;Lan Zhou,&nbsp;Wei Zhong,&nbsp;Yu-Bo Sheng","doi":"10.1007/s11128-025-04902-7","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum teleportation (QT) enables one party to transmit an unknown quantum state to a remote party without sending the real qubit itself. Controlled quantum teleportation (CQT) is an important multipartite QT mode, which plays an indispensable role in building quantum networks. CQT requires distributing multipartite entanglement in quantum channels, so that channel noise becomes the main obstacle for CQT’s practical application. To enhance CQT’s noise robustness, we introduce the quantum error correction (QEC) into CQT and propose the CQT protocol based on the atomic redundancy code. In our protocol, multiple parties use atomic states and electron–photon entangled states to construct the remote atomic logical GHZ state with the help of the heralded photonic Bell state measurement (BSM), atom–electron controlled-not operation, single-electron measurement and single-atom measurement. Our CQT protocol is feasible under current experimental condition. It has some attractive advantages. First, benefiting from the heralded photonic BSM, the influence from photon transmission loss can be automatically eliminated. Second, the error correction function of the repetition code can increase the fidelity of the teleported logical state. Our CQT protocol can be extended to use other stronger QEC code. It provides a promising way to promote CQT’s practicality in the future.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04902-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum teleportation (QT) enables one party to transmit an unknown quantum state to a remote party without sending the real qubit itself. Controlled quantum teleportation (CQT) is an important multipartite QT mode, which plays an indispensable role in building quantum networks. CQT requires distributing multipartite entanglement in quantum channels, so that channel noise becomes the main obstacle for CQT’s practical application. To enhance CQT’s noise robustness, we introduce the quantum error correction (QEC) into CQT and propose the CQT protocol based on the atomic redundancy code. In our protocol, multiple parties use atomic states and electron–photon entangled states to construct the remote atomic logical GHZ state with the help of the heralded photonic Bell state measurement (BSM), atom–electron controlled-not operation, single-electron measurement and single-atom measurement. Our CQT protocol is feasible under current experimental condition. It has some attractive advantages. First, benefiting from the heralded photonic BSM, the influence from photon transmission loss can be automatically eliminated. Second, the error correction function of the repetition code can increase the fidelity of the teleported logical state. Our CQT protocol can be extended to use other stronger QEC code. It provides a promising way to promote CQT’s practicality in the future.

Abstract Image

Abstract Image

基于量子误差校正的噪声弹性控制量子隐形传态
量子隐形传态(QT)使一方能够在不发送实际量子比特本身的情况下将未知量子态传输给远程一方。受控量子隐形传态(CQT)是一种重要的多方量子隐形传态模式,在构建量子网络中起着不可或缺的作用。CQT需要在量子信道中分布多部纠缠,信道噪声成为CQT实际应用的主要障碍。为了提高CQT的噪声鲁棒性,我们在CQT中引入量子纠错(QEC),并提出了基于原子冗余码的CQT协议。在我们的协议中,多方利用原子态和电子-光子纠缠态,借助预示光子贝尔态测量(BSM)、原子-电子控制-非操作、单电子测量和单原子测量,构建了远程原子逻辑GHZ态。我们的CQT方案在目前的实验条件下是可行的。它有一些吸引人的优点。首先,得益于预示光子BSM,光子传输损耗的影响可以自动消除。其次,重复码的纠错功能可以提高传送逻辑状态的保真度。我们的CQT协议可以扩展到使用其他更强的QEC代码。这为今后提高CQT的实用化提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信