Simulation of Shor Algorithm for Discrete Logarithm Problems With Comprehensive Pairs of Modulo $p$ and Order $q$

IF 4.6
Kaito Kishi;Junpei Yamaguchi;Tetsuya Izu;Noboru Kunihiro
{"title":"Simulation of Shor Algorithm for Discrete Logarithm Problems With Comprehensive Pairs of Modulo $p$ and Order $q$","authors":"Kaito Kishi;Junpei Yamaguchi;Tetsuya Izu;Noboru Kunihiro","doi":"10.1109/TQE.2025.3591213","DOIUrl":null,"url":null,"abstract":"The discrete logarithm problem (DLP) over finite fields, commonly used in classical cryptography, has no known polynomial-time algorithm on classical computers. However, Shor has provided its polynomial-time algorithm on quantum computers. Nevertheless, there are only few examples simulating quantum circuits that operate on general pairs of modulo <inline-formula><tex-math>$p$</tex-math></inline-formula> and order <inline-formula><tex-math>$q$</tex-math></inline-formula>. In this article, we constructed such quantum circuits and solved DLPs for all 1860 possible pairs of <inline-formula><tex-math>$p$</tex-math></inline-formula> and <inline-formula><tex-math>$q$</tex-math></inline-formula> up to 32 qubits using a quantum simulator with PRIMEHPC FX700. From this, we obtained and verified values of the success probabilities, which had previously been heuristically analyzed by Ekerå (2019). As a result, the detailed waveform shape of the success probability of Shor's algorithm for solving the DLP, known as a periodic function of order <inline-formula><tex-math>$q$</tex-math></inline-formula>, was clarified. In addition, we generated 1015 quantum circuits for larger pairs of <inline-formula><tex-math>$p$</tex-math></inline-formula> and <inline-formula><tex-math>$q$</tex-math></inline-formula>, extrapolated the circuit sizes obtained, and compared them for <inline-formula><tex-math>$p=2048$</tex-math></inline-formula> bits between safe-prime groups and Schnorr groups. While in classical cryptography, the cipher strength of safe-prime groups and Schnorr groups is the same if <inline-formula><tex-math>$p$</tex-math></inline-formula> is equal, we quantitatively demonstrated how much the strength of the latter decreases to the bit length of <inline-formula><tex-math>$p$</tex-math></inline-formula> in the former when using Shor's quantum algorithm. In particular, it was experimentally and theoretically shown that when a basic adder is used in the addition circuit, the cryptographic strength of a Schnorr group with <inline-formula><tex-math>$p=2048$</tex-math></inline-formula> bits under Shor's algorithm is almost equivalent to that of a safe-prime group with <inline-formula><tex-math>$p=1024$</tex-math></inline-formula> bits.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-12"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11087664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11087664/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The discrete logarithm problem (DLP) over finite fields, commonly used in classical cryptography, has no known polynomial-time algorithm on classical computers. However, Shor has provided its polynomial-time algorithm on quantum computers. Nevertheless, there are only few examples simulating quantum circuits that operate on general pairs of modulo $p$ and order $q$. In this article, we constructed such quantum circuits and solved DLPs for all 1860 possible pairs of $p$ and $q$ up to 32 qubits using a quantum simulator with PRIMEHPC FX700. From this, we obtained and verified values of the success probabilities, which had previously been heuristically analyzed by Ekerå (2019). As a result, the detailed waveform shape of the success probability of Shor's algorithm for solving the DLP, known as a periodic function of order $q$, was clarified. In addition, we generated 1015 quantum circuits for larger pairs of $p$ and $q$, extrapolated the circuit sizes obtained, and compared them for $p=2048$ bits between safe-prime groups and Schnorr groups. While in classical cryptography, the cipher strength of safe-prime groups and Schnorr groups is the same if $p$ is equal, we quantitatively demonstrated how much the strength of the latter decreases to the bit length of $p$ in the former when using Shor's quantum algorithm. In particular, it was experimentally and theoretically shown that when a basic adder is used in the addition circuit, the cryptographic strength of a Schnorr group with $p=2048$ bits under Shor's algorithm is almost equivalent to that of a safe-prime group with $p=1024$ bits.
具有模$p$和阶$q$的综合对离散对数问题的shoror算法仿真
经典密码学中常用的有限域上的离散对数问题,在经典计算机上没有已知的多项式时间算法。然而,Shor已经在量子计算机上提供了多项式时间算法。然而,只有很少的例子模拟量子电路在模$p$和阶$q$的一般对上运行。在本文中,我们构建了这样的量子电路,并使用带有PRIMEHPC FX700的量子模拟器解决了所有1860对可能的$p$和$q$(最多32个量子位)的dlp。由此,我们获得并验证了成功概率的值,该值之前由eker(2019)进行了启发式分析。从而明确了求解DLP的Shor算法成功概率的详细波形形状,即阶为$q$的周期函数。此外,我们为较大的$p$和$q$对生成了1015个量子电路,外推了所获得的电路尺寸,并在安全素数组和Schnorr组之间比较了$p=2048$位。在经典密码学中,如果$p$相等,则安全素数群和Schnorr群的密码强度是相同的,我们定量地证明了在使用Shor量子算法时,后者的强度在前者中降低到$p$位长度的程度。特别是,实验和理论证明,当在加法电路中使用基本加法器时,在Shor算法下,$p=2048$ bits的Schnorr群的密码强度与$p=1024$ bits的安全素数群的密码强度几乎相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信