Zipeng Zhang , Jianli Ding , Liangyi Li , Jinhua Cao , Keqiang Wang , Chuanmei Zhu , Xiangyu Ge , Jinjie Wang , Chaolei Yang , Fujie Li , Jingzhe Wang
{"title":"The impact of extreme climate on soil organic carbon in China","authors":"Zipeng Zhang , Jianli Ding , Liangyi Li , Jinhua Cao , Keqiang Wang , Chuanmei Zhu , Xiangyu Ge , Jinjie Wang , Chaolei Yang , Fujie Li , Jingzhe Wang","doi":"10.1016/j.geosus.2025.100356","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative studies on the national-scale effects of extreme climatic events on soil organic carbon (SOC) remain scarce, thus limiting our understanding of SOC dynamics. This study utilized 4515 publicly available soil samples to quantify the impacts of 19 extreme climatic indices (ECIs) on ΔSOC reservoirs in China through a hybrid space-for-time and meta-analysis approach. Overall, 16/19 ECIs were negatively correlated with ΔSOC, with the minimum temperature of the coldest night (TNn) showing the strongest negative correlation. Notably, topographic factors played a pivotal role in the modeling process, contributing an average of 25 %, followed by ECIs. Under the influence of the ECIs, SOC exhibited spatial variation. Extreme heat resulted in the greatest SOC losses in cold regions, such as North China, with average reductions of > 5 %, whereas its impact was weaker in South China, with SOC losses of ∼3 %. Extreme cold and wet indices promoted SOC accumulation in the Northeast China, with increases of ∼3 %, but showed a weaker response in the humid region, where the SOC increased by only 1 %. At the national scale, the impacts of extreme climatic events on SOC in the 0–20 cm ranged from −2.36 Pg to 2.34 Pg. Different ecosystems responded variably, with forest and grassland ecosystems being more sensitive to ECIs, potentially due to higher organic matter inputs and greater ecosystem complexity. In contrast, bare land exhibited weaker responses due to limited vegetation cover and organic inputs. These findings provide valuable insights into SOC dynamics at national scale during extreme climatic events.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 6","pages":"Article 100356"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683925000951","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative studies on the national-scale effects of extreme climatic events on soil organic carbon (SOC) remain scarce, thus limiting our understanding of SOC dynamics. This study utilized 4515 publicly available soil samples to quantify the impacts of 19 extreme climatic indices (ECIs) on ΔSOC reservoirs in China through a hybrid space-for-time and meta-analysis approach. Overall, 16/19 ECIs were negatively correlated with ΔSOC, with the minimum temperature of the coldest night (TNn) showing the strongest negative correlation. Notably, topographic factors played a pivotal role in the modeling process, contributing an average of 25 %, followed by ECIs. Under the influence of the ECIs, SOC exhibited spatial variation. Extreme heat resulted in the greatest SOC losses in cold regions, such as North China, with average reductions of > 5 %, whereas its impact was weaker in South China, with SOC losses of ∼3 %. Extreme cold and wet indices promoted SOC accumulation in the Northeast China, with increases of ∼3 %, but showed a weaker response in the humid region, where the SOC increased by only 1 %. At the national scale, the impacts of extreme climatic events on SOC in the 0–20 cm ranged from −2.36 Pg to 2.34 Pg. Different ecosystems responded variably, with forest and grassland ecosystems being more sensitive to ECIs, potentially due to higher organic matter inputs and greater ecosystem complexity. In contrast, bare land exhibited weaker responses due to limited vegetation cover and organic inputs. These findings provide valuable insights into SOC dynamics at national scale during extreme climatic events.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.