Prediction of the mixing enthalpy by improving the MEAM potential function for Cu-based binary systems

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Jiahao Li , Yizhao Wang , Li Zhu , Hongwei Yang
{"title":"Prediction of the mixing enthalpy by improving the MEAM potential function for Cu-based binary systems","authors":"Jiahao Li ,&nbsp;Yizhao Wang ,&nbsp;Li Zhu ,&nbsp;Hongwei Yang","doi":"10.1016/j.cocom.2025.e01115","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the melting points and standard formation enthalpies of pure metals (aluminum, iron, cobalt, nickel, copper, silver) are verified using the second-order nearest-neighbor modified embedding atom method (2NN-MEAM), confirming the physical rationality of their basic parameters. Regarding the “failure of solid-state parameters in the liquid state” problem existing in the existing Cu-X (X = Al, Fe, Co, Ni, Ag) system MEAM potential, an optimization strategy for potential parameters based on energy gradient analysis and liquid-state configuration sensitivity is proposed. By reconstructing the dynamic correlation mechanism between the multi-body interaction parameters and the local environmental response, the optimized potentials significantly improve the accuracy of the liquid state mixing enthalpy prediction. Moreover, by comparing with the experimental data, it is proved that the optimized MEAM potential significantly improves the accuracy of the mixed enthalpy prediction for the alloy systems.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01115"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the melting points and standard formation enthalpies of pure metals (aluminum, iron, cobalt, nickel, copper, silver) are verified using the second-order nearest-neighbor modified embedding atom method (2NN-MEAM), confirming the physical rationality of their basic parameters. Regarding the “failure of solid-state parameters in the liquid state” problem existing in the existing Cu-X (X = Al, Fe, Co, Ni, Ag) system MEAM potential, an optimization strategy for potential parameters based on energy gradient analysis and liquid-state configuration sensitivity is proposed. By reconstructing the dynamic correlation mechanism between the multi-body interaction parameters and the local environmental response, the optimized potentials significantly improve the accuracy of the liquid state mixing enthalpy prediction. Moreover, by comparing with the experimental data, it is proved that the optimized MEAM potential significantly improves the accuracy of the mixed enthalpy prediction for the alloy systems.
用改进MEAM势函数预测铜基二元体系的混合焓
本研究采用二阶近邻修饰嵌入原子法(2NN-MEAM)对纯金属(铝、铁、钴、镍、铜、银)的熔点和标准生成焓进行了验证,确认了其基本参数的物理合理性。针对现有Cu-X (X = Al, Fe, Co, Ni, Ag)体系MEAM电势存在的“固态参数在液态失效”问题,提出了一种基于能量梯度分析和液相构型灵敏度的电势参数优化策略。通过重构多体相互作用参数与局部环境响应之间的动态关联机制,优化势能显著提高了液相混合焓预测的精度。此外,通过与实验数据的比较,证明优化后的MEAM势显著提高了合金体系混合焓预测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信