Songge Li , Nicolas Gauquelin , Hoelen L. Lalandec Robert , Arno Annys , Chuang Gao , Christoph Hofer , Timothy J. Pennycook , Jo Verbeeck
{"title":"Improving the low-dose performance of aberration correction in single sideband ptychography","authors":"Songge Li , Nicolas Gauquelin , Hoelen L. Lalandec Robert , Arno Annys , Chuang Gao , Christoph Hofer , Timothy J. Pennycook , Jo Verbeeck","doi":"10.1016/j.ultramic.2025.114225","DOIUrl":null,"url":null,"abstract":"<div><div>The single sideband (SSB) framework of analytical electron ptychography can account for the presence of residual geometrical aberrations induced by the probe-forming lens. However, the accuracy of this aberration correction method is highly sensitive to the invested electron dose, in part due to the necessity of phase unwrapping. In this work, we thus propose two strategies to improve the performance in low-dose conditions: confining phase unwrapping within the sidebands and selecting only well-unwrapped sidebands for calculating aberration coefficients. These strategies are validated through SSB reconstructions of both simulated and experimental 4D-STEM datasets of monolayer tungsten diselenide (WSe<sub>2</sub>). A comparison of results demonstrates significant improvements in Poisson noise tolerance, making aberration correction more robust and reliable for low-dose imaging.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"277 ","pages":"Article 114225"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125001238","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The single sideband (SSB) framework of analytical electron ptychography can account for the presence of residual geometrical aberrations induced by the probe-forming lens. However, the accuracy of this aberration correction method is highly sensitive to the invested electron dose, in part due to the necessity of phase unwrapping. In this work, we thus propose two strategies to improve the performance in low-dose conditions: confining phase unwrapping within the sidebands and selecting only well-unwrapped sidebands for calculating aberration coefficients. These strategies are validated through SSB reconstructions of both simulated and experimental 4D-STEM datasets of monolayer tungsten diselenide (WSe2). A comparison of results demonstrates significant improvements in Poisson noise tolerance, making aberration correction more robust and reliable for low-dose imaging.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.