Research on smartphone image source identification based on PRNU features collected multivariate sampling strategy

IF 2.2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fu-Yuan Liang, Shu-Hui Gao, Liang-Ju Xu
{"title":"Research on smartphone image source identification based on PRNU features collected multivariate sampling strategy","authors":"Fu-Yuan Liang,&nbsp;Shu-Hui Gao,&nbsp;Liang-Ju Xu","doi":"10.1016/j.fsidi.2025.301991","DOIUrl":null,"url":null,"abstract":"<div><div>Photo Response Non-Uniformity (PRNU)-based image source attribution is one of the core methods for identifying the imaging device of a given picture, and has significant applications in the field of digital media forensics. However, with the increasing complexity of smartphone imaging systems, PRNU features extracted from smartphone images exhibit greater instability compared to those from traditional cameras. This instability can lead to performance degradation in conventional single-sample extraction strategies when applied to smartphone image source attribution. To address this challenge, this paper proposes a robust multi-sample enhancement scheme. To verify its generalizability, we employ both a non–data-driven wavelet-domain decomposition algorithm and a deep U-shaped residual neural network (DRUNet) as noise extractors, and conduct experiments on the FODB dataset. Experimental results demonstrate that the proposed multi-sample framework exhibits superior performance in improving feature stability, providing a new technical pathway for digital image source attribution in smart terminal devices. Furthermore, we perform PCE distribution statistics on positive and negative samples in the dataset and quantitatively analyze the regional instability of PRNU features.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"54 ","pages":"Article 301991"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725001313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Photo Response Non-Uniformity (PRNU)-based image source attribution is one of the core methods for identifying the imaging device of a given picture, and has significant applications in the field of digital media forensics. However, with the increasing complexity of smartphone imaging systems, PRNU features extracted from smartphone images exhibit greater instability compared to those from traditional cameras. This instability can lead to performance degradation in conventional single-sample extraction strategies when applied to smartphone image source attribution. To address this challenge, this paper proposes a robust multi-sample enhancement scheme. To verify its generalizability, we employ both a non–data-driven wavelet-domain decomposition algorithm and a deep U-shaped residual neural network (DRUNet) as noise extractors, and conduct experiments on the FODB dataset. Experimental results demonstrate that the proposed multi-sample framework exhibits superior performance in improving feature stability, providing a new technical pathway for digital image source attribution in smart terminal devices. Furthermore, we perform PCE distribution statistics on positive and negative samples in the dataset and quantitatively analyze the regional instability of PRNU features.
基于PRNU特征采集多元采样策略的智能手机图像源识别研究
基于照片响应非均匀性(PRNU)的图像源归属是识别给定图像的成像设备的核心方法之一,在数字媒体取证领域具有重要应用。然而,随着智能手机成像系统的日益复杂,与传统相机相比,从智能手机图像中提取的PRNU特征表现出更大的不稳定性。当应用于智能手机图像源归属时,这种不稳定性会导致传统单样本提取策略的性能下降。为了解决这一挑战,本文提出了一种鲁棒的多样本增强方案。为了验证其泛化性,我们采用了非数据驱动的小波域分解算法和深度u形残差神经网络(DRUNet)作为噪声提取器,并在FODB数据集上进行了实验。实验结果表明,所提出的多样本框架在提高特征稳定性方面表现出优异的性能,为智能终端设备中数字图像源归属提供了新的技术途径。此外,我们对数据集中的正、负样本进行PCE分布统计,定量分析PRNU特征的区域不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信