On the triviality of m-modified conformal vector fields

IF 0.8 4区 数学 Q3 MATHEMATICS
Rahul Poddar , Ramesh Sharma
{"title":"On the triviality of m-modified conformal vector fields","authors":"Rahul Poddar ,&nbsp;Ramesh Sharma","doi":"10.1016/j.indag.2025.05.009","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that a compact Riemannian manifold <span><math><mi>M</mi></math></span> does not admit any non-trivial <span><math><mi>m</mi></math></span>-modified homothetic vector fields. In the corresponding case of an <span><math><mi>m</mi></math></span>-modified conformal vector field <span><math><mi>V</mi></math></span>, we establish an inequality that implies the triviality of <span><math><mi>V</mi></math></span>. Further, we demonstrate that an affine Killing <span><math><mi>m</mi></math></span>-modified conformal vector field on a non-compact Riemannian manifold <span><math><mi>M</mi></math></span> must be trivial. Finally, we show that an <span><math><mi>m</mi></math></span>-modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1481-1490"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a compact Riemannian manifold M does not admit any non-trivial m-modified homothetic vector fields. In the corresponding case of an m-modified conformal vector field V, we establish an inequality that implies the triviality of V. Further, we demonstrate that an affine Killing m-modified conformal vector field on a non-compact Riemannian manifold M must be trivial. Finally, we show that an m-modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.
关于m-修正共形向量场的平凡性
证明了紧黎曼流形M不存在任何非平凡的M -修正齐次向量场。在相应的M -修正共形向量场V的情况下,我们建立了一个暗示V的平凡性的不等式,进一步证明了非紧黎曼流形M上的仿射杀死M -修正共形向量场一定是平凡的。最后,我们证明了在多项式体积增长和无穷远收敛于零的假设下,m修正梯度共形向量场是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信