AutoRL framework for bioprocess control: Optimizing reward function, architecture, and hyperparameters

IF 4.1 Q2 ENGINEERING, CHEMICAL
D.A. Goulart , R.D. Pereira , F.V. Silva
{"title":"AutoRL framework for bioprocess control: Optimizing reward function, architecture, and hyperparameters","authors":"D.A. Goulart ,&nbsp;R.D. Pereira ,&nbsp;F.V. Silva","doi":"10.1016/j.dche.2025.100261","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a structured AutoRL framework for the development of deep reinforcement learning (DRL) controllers in chemical process systems. Focusing on the control of a 3<span><math><mo>×</mo></math></span> 3 MIMO yeast fermentation bioreactor, the methodology jointly optimizes three key internal components of the DRL agent: the reward function, the neural network architecture, and the hyperparameters of the algorithm. A parameterizable logistic reward formulation is introduced to encode control objectives, such as steady-state accuracy, minimalization of actuation effort, and control smoothness, into a flexible and tunable structure. A dual loop optimization strategy combines grid search and Bayesian optimization to systematically explore and refine the agent’s design space. The resulting controller achieved average steady-state errors of 0.009 °C for reactor temperature and 0.19 g/L for ethanol concentration, while maintaining smooth and stable behavior under diverse operational scenarios. By formalizing reward design and integrating it with hyperparameter and architecture optimization, this work delivers a AutoRL methodology for DRL-based control, reducing reliance on expert heuristics and enhancing reproducibility in complex bioprocess applications.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"16 ","pages":"Article 100261"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a structured AutoRL framework for the development of deep reinforcement learning (DRL) controllers in chemical process systems. Focusing on the control of a 3× 3 MIMO yeast fermentation bioreactor, the methodology jointly optimizes three key internal components of the DRL agent: the reward function, the neural network architecture, and the hyperparameters of the algorithm. A parameterizable logistic reward formulation is introduced to encode control objectives, such as steady-state accuracy, minimalization of actuation effort, and control smoothness, into a flexible and tunable structure. A dual loop optimization strategy combines grid search and Bayesian optimization to systematically explore and refine the agent’s design space. The resulting controller achieved average steady-state errors of 0.009 °C for reactor temperature and 0.19 g/L for ethanol concentration, while maintaining smooth and stable behavior under diverse operational scenarios. By formalizing reward design and integrating it with hyperparameter and architecture optimization, this work delivers a AutoRL methodology for DRL-based control, reducing reliance on expert heuristics and enhancing reproducibility in complex bioprocess applications.
生物过程控制的AutoRL框架:优化奖励函数、结构和超参数
本研究提出了一个结构化的AutoRL框架,用于开发化学过程系统中的深度强化学习(DRL)控制器。该方法以3x3 MIMO酵母发酵生物反应器的控制为重点,对DRL agent的三个关键内部组件:奖励函数、神经网络架构和算法的超参数进行了联合优化。引入了一个参数化的逻辑奖励公式,将控制目标(如稳态精度、驱动努力最小化和控制平滑度)编码为一个灵活可调的结构。采用网格搜索和贝叶斯优化相结合的双环优化策略,系统地探索和细化智能体的设计空间。该控制器在反应器温度和乙醇浓度的平均稳态误差分别为0.009°C和0.19 g/L,同时在各种操作场景下保持平稳稳定的行为。通过将奖励设计形式化并将其与超参数和架构优化相结合,本研究为基于drl的控制提供了一种AutoRL方法,减少了对专家启发式的依赖,并提高了复杂生物过程应用的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信